Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.advisorZysman-Colman, Eli
dc.contributor.authorSi, Changfeng
dc.coverage.spatial406en_US
dc.date.accessioned2023-11-03T12:20:28Z
dc.date.available2023-11-03T12:20:28Z
dc.date.issued2023-11-29
dc.identifier.urihttps://hdl.handle.net/10023/28629
dc.description.abstractDeveloping efficient red thermally activated delayed fluorescence (TADF) emitters remains a formidable challenge due to their low photoluminescence quantum yield governed by the energy-gap law. This thesis concerns the study of orange-to-red TADF materials, focusing on their molecular design, synthesis and photophysics. In addition to OLEDs, these materials were employed as sensors and bioimaging reagents. Chapter 1 introduces fundamental principles of photoluminescence, electroluminescence, and provides a review of red TADF emitters for OLEDs and TADF emitters for bioimaging. Chapter 2 documents the relationship between different N-doped polycyclic aromatic hydrocarbons (PAH)-acceptor compounds (DMACBP, DMACPyBP, DMACBPN and DMACPyBPN), their photophysics and OLED performance. Chapter 3 focuses on a molecular design strategy that combines a p-conjugated acceptors with a TPA donor. By modulating the solid-state solvatochromism and adjusting the p-p stacking interactions, a deep red emission was obtained from both the TPAPyBPN-doped films and its OLED. Furthermore, we demonstrated the first TADF optical sensor for ZnCl₂ based on TPAPyBP. Chapter 4 explores four new yellow-to-red TADF dendrimer emitters, which were designed to be solution processable. We systematically investigated the effect of substitution position and the strength of the donors on the optoelectronic properties of these four dendrimers. Finally, we employed these emitters in solution-processed OLEDs. Chapter 5 continues the work on TADF dendrimer emitters by investigating the effect of extending the p-conjugation of the acceptor on the photophsics of the compound. 2GCzBPPZ, with a much larger planarity and p-conjugation acceptor, shows unusual dual emission that is both concentration-dependent and temperature-dependent in solution. 2GCzBPPZ is the first small molecule TADF compound used for colorimetric temperature sensing. Chapter 6 presents three tetra(donor)-acceptor compounds TCzPhCor, TDMACPhCor, and TPXZPhCor employing corannulene, a curved PAH, as the acceptor. These three emitters exhibit room-temperature phosphorescence from different excited triplet states. While TPXZPhCor doped film can act as an optical temperature sensor in the range from 77 K to 298 K. We also fabricated solution-processed afterglow OLEDs using TPXZPhCor. Chapter 7 explores the use of D-A TADF emitters in bioimaging. We discussed two types of water-soluble materials: nanoparticles and water-soluble sodium-salt emitters. We also document our first attempt to study these compounds in vitro.en_US
dc.description.sponsorship"This work was supported by China Scholarship Council (CSC) (grant number: 201806890001) and the School of Chemistry at the University of St Andrews."--Fundingen
dc.language.isoenen_US
dc.relationDesign and Synthesis of Red Thermally Activated Delayed Fluorescence Emitters for OLED, Sensors and Bioimaging (thesis data). Si, C., University of St Andrews, 1 Nov 2024. DOI: 10.17630/54b79926-d8ae-4019-ad10-d2bbf1777816
dc.relationSi, C., Hu, Y-N., Sun, D., Wang, K., Zhang, X., & Zysman-Colman, E. (2023). The influence of nitrogen doping of the acceptor in orange–red thermally activated delayed fluorescence emitters and OLEDs. Journal of Materials Chemistry C, 11(36), 12174-12184. https://doi.org/10.1039/D3TC02352D.
dc.relationSi, C., Wang, T., Gupta, A. K., Cordes, D. B., Slawin, A. M. Z., Siegel, J. S., & Zysman-Colman, E. (2023). Room-temperature multiple phosphorescence from functionalized corannulenes: temperature sensing and afterglow organic light-emitting diode. Angewandte Chemie International Edition, 62(43), [e202309718]. https://doi.org/10.1002/anie.202309718. https://doi.org/10.1002/adma.202300997.
dc.relationMadayanad Suresh, S., Zhang, L., Matulaitis, T., Hall, D., Si, C., Ricci, G., Slawin, A. M. Z., Warriner, S., Beljonne, D., Olivier, Y., Samuel, I. D. W., & Zysman-Colman, E. (2023). Judicious heteroatom doping produces high-performance deep blue/near-UV multiresonant thermally activated delayed fluorescence OLEDs. Advanced Materials, 35(33), [2300997]. https://doi.org/10.1002/ange.202215522.
dc.relationMadayanad Suresh, S., Zhang, L., Hall, D., Si, C., Ricci, G., Matulaitis, T., Slawin, A. M. Z., Warriner, S., Olivier, Y., Samuel, I. D., & Zysman-Colman, E. (2023). A deep-blue-emitting heteroatom-doped MR-TADF nonacene for high-performance organic light-emitting diodes. Angewandte Chemie International Edition, 62(8), [e202215522]. https://doi.org/10.1002/ange.202215522.
dc.relationYuan, K., Gupta, A. K., Si, C., Uzelac, M., Zysman-Colman, E., & Ingleson, M. J. (2023). Brominated B1-polycyclic aromatic hydrocarbons for the synthesis of deep-red to near-infrared delayed fluorescence emitters. Organic Letters, 25(31), 5880-5884. https://doi.org/10.1021/acs.orglett.3c02167.
dc.relationSun, D., Si, C., Wang, T., & Zysman-Colman, E. (2022). 1,3,5-Triazine-functionalized thermally activated delayed fluorescence emitters for organic light-emitting diodes. Advanced Photonics Research, 3(11), [2200203]. https://doi.org/10.1002/adpr.202200203.
dc.relationHong, G., Si, C., Gupta, A. K., Bizzarri, C., Nieger, M., Samuel, I. D. W., Zysman-Colman, E., & Bräse, S. (2022). Fluorinated dibenzo[a,c]-phenazine-based green to red thermally activated delayed fluorescent OLED emitters. Journal of Materials Chemistry C, 10(12), 4757-4766. https://doi.org/10.1039/D1TC04918F.
dc.relationLi, W., Li, Z., Si, C., Wong, M. Y., Jinnai, K., Gupta, A. K., Kabe, R., Adachi, C., Huang, W., Zysman-Colman, E., & Samuel, I. D. W. (2020). Organic long persistent luminescence from a thermally activated delayed fluorescence compound. Advanced Materials, 32(45), [2003911]. https://doi.org/10.1002/adma.202003911.
dc.relationIngleson, M. J., Yuan, K., Kahan, R. J., Si, C., Williams, A., Kirschner, S., Uzelac, M., Zysman-Colman, E., & Ingleson, M. J. (2020). The synthesis of brominated-boron-doped PAHs by alkyne 1,1-bromoboration: mechanistic and functionalisation studies. Chemical Science, 11(12), 3258-3267. https://doi.org/10.1039/c9sc05404a.
dc.relationSun, D., Suresh, S. M., Hall, D., Zhang, M., Si, C., Cordes, D. B., Slawin, A., Olivier, Y., Zhang, X., & Zysman-Colman, E. (2020). The design of extended multiple resonance thermally activated delayed fluorescence emitter based on polycyclic amine/carbonyl system. Materials Chemistry Frontiers, 4(7), 2018-2022. https://doi.org/10.1039/d0qm00190b.
dc.relation.urihttps://doi.org/10.17630/54b79926-d8ae-4019-ad10-d2bbf1777816
dc.relation.urihttps://doi.org/10.1039/D3TC02352D
dc.relation.urihttps://doi.org/10.1002/anie.202309718
dc.relation.urihttps://doi.org/10.1002/adma.202300997
dc.relation.urihttps://doi.org/10.1002/anie.202215522
dc.relation.urihttps://doi.org/10.1021/acs.orglett.3c02167
dc.relation.urihttps://doi.org/10.1002/adpr.202200203
dc.relation.urihttps://doi.org/10.1039/D1TC04918F
dc.relation.urihttps://doi.org/10.1002/adma.202003911
dc.relation.urihttps://doi.org/10.1039/C9SC05404A
dc.relation.urihttps://doi.org/10.1039/D0QM00190B
dc.rightsCreative Commons Attribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectThermally activated delayed fluorescenceen_US
dc.subjectRed TADFen_US
dc.subjectOLEDsen_US
dc.subjectSensorsen_US
dc.subjectBioimagingen_US
dc.subjectN-doped polycyclic aromatic hydrocarbons (PAH)-acceptoren_US
dc.subject.lccTK7871.89L53S6
dc.subject.lcshLight emitting diodesen
dc.subject.lcshFluorescenceen
dc.subject.lcshElectroluminescent devicesen
dc.subject.lcshDetectorsen
dc.titleDesign and synthesis of red thermally activated delayed fluorescence emitters for OLEDs, sensors and bioimagingen_US
dc.typeThesisen_US
dc.contributor.sponsorChina Scholarship Council (CSC)en_US
dc.contributor.sponsorUniversity of St Andrews. School of Chemistryen_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US
dc.rights.embargodate2024-11-01en_US
dc.rights.embargoreasonThesis restricted in accordance with University regulations. Restricted until 1 November 2024en_US
dc.identifier.doihttps://doi.org/10.17630/sta/650
dc.identifier.grantnumber201806890001en_US


The following licence files are associated with this item:

    This item appears in the following Collection(s)

    Show simple item record

    Creative Commons Attribution 4.0 International
    Except where otherwise noted within the work, this item's licence for re-use is described as Creative Commons Attribution 4.0 International