Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorCzekala, Ian
dc.contributor.authorAndrews, Sean M.
dc.contributor.authorMandel, Kaisey S.
dc.contributor.authorHogg, David W.
dc.contributor.authorGreen, Gregory M.
dc.date.accessioned2023-09-14T16:30:02Z
dc.date.available2023-09-14T16:30:02Z
dc.date.issued2015-10-15
dc.identifier293796823
dc.identifier588257ed-a067-4ecc-9c26-9168d4ae7044
dc.identifier84946082015
dc.identifier.citationCzekala , I , Andrews , S M , Mandel , K S , Hogg , D W & Green , G M 2015 , ' Constructing a flexible likelihood function for spectroscopic inference ' , The Astrophysical Journal , vol. 812 , no. 2 , 128 . https://doi.org/10.1088/0004-637X/812/2/128en
dc.identifier.otherBibCode: 2015ApJ...812..128C
dc.identifier.otherORCID: /0000-0002-1483-8811/work/142499004
dc.identifier.urihttps://hdl.handle.net/10023/28384
dc.descriptionFunding: I.C. is supported by the NSF Graduate Fellowship and the Smithsonian Institution. K.S.M. is supported at Harvard by NSF grant AST-1211196.en
dc.description.abstractWe present a modular, extensible likelihood framework for spectroscopic inference based on synthetic model spectra. The subtraction of an imperfect model from a continuously sampled spectrum introduces covariance between adjacent datapoints (pixels) into the residual spectrum. For the high signal-to-noise data with large spectral range that is commonly employed in stellar astrophysics, that covariant structure can lead to dramatically underestimated parameter uncertainties (and, in some cases, biases). We construct a likelihood function that accounts for the structure of the covariance matrix, utilizing the machinery of Gaussian process kernels. This framework specifically addresses the common problem of mismatches in model spectral line strengths (with respect to data) due to intrinsic model imperfections (e.g., in the atomic/molecular databases or opacity prescriptions) by developing a novel local covariance kernel formalism that identifies and self-consistently downweights pathological spectral line “outliers.” By fitting many spectra in a hierarchical manner, these local kernels provide a mechanism to learn about and build data-driven corrections to synthetic spectral libraries. An open-source software implementation of this approach is available at http://iancze.github.io/Starfish, including a sophisticated probabilistic scheme for spectral interpolation when using model libraries that are sparsely sampled in the stellar parameters. We demonstrate some salient features of the framework by fitting the high-resolution V-band spectrum of WASP-14, an F5 dwarf with a transiting exoplanet, and the moderate-resolution K-band spectrum of Gliese 51, an M5 field dwarf.
dc.format.extent21
dc.format.extent1893691
dc.language.isoeng
dc.relation.ispartofThe Astrophysical Journalen
dc.subjectMethods: data analysisen
dc.subjectMethods: statisticalen
dc.subjectStars: fundamental parametersen
dc.subjectStars: late-typeen
dc.subjectStars: statisticsen
dc.subjectTechniques: spectroscopicen
dc.subjectQB Astronomyen
dc.subjectQC Physicsen
dc.subject.lccQBen
dc.subject.lccQCen
dc.titleConstructing a flexible likelihood function for spectroscopic inferenceen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.identifier.doihttps://doi.org/10.1088/0004-637X/812/2/128
dc.description.statusPeer revieweden
dc.identifier.urlhttp://adsabs.harvard.edu/abs/2015ApJ...812..128Cen


This item appears in the following Collection(s)

Show simple item record