Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorArita, Yoshihiko
dc.contributor.authorSimpson, Stephen
dc.contributor.authorBruce, Graham David
dc.contributor.authorWright, Ewan Malcolm
dc.contributor.authorcz, Academy of sciences of
dc.contributor.authorDholakia, Kishan
dc.date.accessioned2023-09-14T15:30:02Z
dc.date.available2023-09-14T15:30:02Z
dc.date.issued2023-09-01
dc.identifier292127918
dc.identifier35b3be28-796f-4527-a4a8-7ac566618dae
dc.identifier85169685984
dc.identifier.citationArita , Y , Simpson , S , Bruce , G D , Wright , E M , cz , A O S O & Dholakia , K 2023 , ' Cooling the optical-spin driven limit cycle oscillations of a levitated gyroscope ' , Communications Physics , vol. 6 , 238 . https://doi.org/10.1038/s42005-023-01336-4en
dc.identifier.issn2399-3650
dc.identifier.otherORCID: /0000-0003-3403-0614/work/142498976
dc.identifier.urihttps://hdl.handle.net/10023/28381
dc.descriptionFunding: Acknowledgements Engineering and Physical Sciences Research Council (EP/P030017/1); Australian Research Council (DP220102303); Akademie vĕd České republiky (Praemium Academiae); Ministerstvo Školství, Mládeže a Tělovýchovy (CZ.02.1.01/0.0/0.0/15 003/0000476).en
dc.description.abstractBirefringent microspheres, trapped in vacuum and set into rotation by circularly polarised light, demonstrate remarkably stable translational motion. This is in marked contrast to isotropic particles in similar conditions. Here we demonstrate that this stability is obtained because the fast rotation of these birefringent spheres reduces the effect of azimuthal spin forces created by the inhomogeneous optical spin of circularly polarised light. At reduced pressures, the unique profile of these rotationally averaged, effective azimuthal forces results in the formation of nano-scale limit cycles. We demonstrate feedback cooling of these non-equilibrium oscillators, resulting in effective temperatures on the order of a milliKelvin. The principles we elaborate here can inform the design of high-stability rotors carrying enhanced centripetal loads or result in more efficient cooling schemes for autonomous limit cycle oscillations. Ultimately, this latter development could provide experimental access to non-equilibrium quantum effects within the mesoscopic regime.
dc.format.extent7
dc.format.extent1692852
dc.language.isoeng
dc.relation.ispartofCommunications Physicsen
dc.subjectQC Physicsen
dc.subjectDASen
dc.subject.lccQCen
dc.titleCooling the optical-spin driven limit cycle oscillations of a levitated gyroscopeen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.institutionUniversity of St Andrews. Centre for Biophotonicsen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Sir James Mackenzie Institute for Early Diagnosisen
dc.contributor.institutionUniversity of St Andrews. Institute of Behavioural and Neural Sciencesen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.identifier.doi10.1038/s42005-023-01336-4
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/P030017/1en


This item appears in the following Collection(s)

Show simple item record