St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generation of Bessel-like beams with reduced sidelobes for enhanced light-sheet microscopy

Thumbnail
View/Open
George_2023_OC_Generation_Bessel_like_2_7_1649.pdf (4.063Mb)
Date
15/07/2023
Author
George, Jerin Geogy
Dholakia, Kishan
Bhattacharya, Shanti
Funder
European Commission
Grant ID
863203
Keywords
QC Physics
NDAS
Metadata
Show full item record
Abstract
Bessel beams have found important applications due to their propagation invariant nature. However, the presence of sidelobes has proven a hindrance in key imaging and biophotonics applications. We describe the design and generation of sidelobe-suppressed Bessel-like beams (SSBB) that provide enhanced contrast for light-sheet imaging. The sidelobe suppression is achieved by the interference of two Bessel beams with slightly different wavevectors. Axicon phase functions for each Bessel beam are combined into a single phase function using the random multiplexing technique. This phase function is realised using a spatial light modulator to generate a SSBB. The generated beam at 633 nm has a 1/e2 radius of 44 µm and a propagation invariant distance of 39 mm which is more than four times that of the Rayleigh range of a Gaussian beam with the same 1/e2 radius. Within this distance, the overall peak intensity of the sidelobes of the SSBB is less than 10% that of the main lobe peak intensity. In addition, through numerical simulation for the recovery of spatial frequencies, we show that the SSBB improves image contrast compared to a Bessel beam for light-sheet imaging. We also show that the designed phase function can be realised using a meta-optical element.
Citation
George , J G , Dholakia , K & Bhattacharya , S 2023 , ' Generation of Bessel-like beams with reduced sidelobes for enhanced light-sheet microscopy ' , Optics Continuum , vol. 2 , no. 7 , 1649 . https://doi.org/10.1364/optcon.493003
Publication
Optics Continuum
Status
Peer reviewed
DOI
https://doi.org/10.1364/optcon.493003
ISSN
2770-0208
Type
Journal article
Rights
Copyright © 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement. Open access journal article PDFs may be governed by the Optica Publishing Group Open Access Publishing Agreement signed by the author and any applicable copyright laws. Authors and readers may use, reuse, and build upon the article, or use it for text or data mining without asking prior permission from the publisher or the Author(s), as long as the purpose is non-commercial and appropriate attribution is maintained.
Description
The authors acknowledge financial support from the Ministry of Human Resource Development, New Delhi through the SPARC project. KD acknowledges support from the Australian Research Council and the European Union’s Horizon 2020 research and innovation programme under the H2020 FETOPEN project “Dynamic”.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/28360

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter