Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorTang, Shi
dc.contributor.authordos Santos, John Marques
dc.contributor.authorRàfols‐Ribé, Joan
dc.contributor.authorWang, Jia
dc.contributor.authorZysman‐Colman, Eli
dc.contributor.authorEdman, Ludvig
dc.date.accessioned2023-08-31T14:30:12Z
dc.date.available2023-08-31T14:30:12Z
dc.date.issued2023-08-24
dc.identifier293402603
dc.identifier0f425212-9c9b-4bd1-a0ee-ee206cd7681b
dc.identifier85168601283
dc.identifier.citationTang , S , dos Santos , J M , Ràfols‐Ribé , J , Wang , J , Zysman‐Colman , E & Edman , L 2023 , ' Introducing MR‐TADF emitters into Light‐Emitting Electrochemical Cells for narrowband and efficient emission ' , Advanced Functional Materials . https://doi.org/10.1002/adfm.202306170en
dc.identifier.issn1616-301X
dc.identifier.otherJisc: 1290387
dc.identifier.otherpublisher-id: adfm202306170
dc.identifier.otherORCID: /0000-0001-7183-6022/work/141644171
dc.identifier.urihttps://hdl.handle.net/10023/28277
dc.descriptionThe Umeå University authors wish to acknowledge generous financial support from the Swedish Research Council, the Swedish Energy Agency, Bertil och Britt Svenssons stiftelse för belysningsteknik, Länsstyrelsen Västerbotten, Kempestiftelserna, Olle Engkvists Stiftelse, Wenner-Gren Foundations, and the Wallenberg Initiative Materials Science for Sustainability, WISE. The St Andrews authors thank the Engineering and Physical Sciences Research Council (EP/R035164/1).en
dc.description.abstractOrganic semiconductors that emit by the process of multi‐resonance thermally activated delayed fluorescence (MR‐TADF) can deliver narrowband and efficient electroluminescence while being processable from solvents and metal‐free. This renders them attractive for use as the emitter in sustainable light‐emitting electrochemical cells (LECs), but so far reports of narrowband and efficient MR‐TADF emission from LEC devices are absent. Here, this issue is addressed through careful and systematic material selection and device development. Specifically, the authors show that the detrimental aggregation tendency of an archetypal rigid and planar carbazole‐based MR‐TADF emitter can be inhibited by its dispersion into a compatible carbazole‐based blend host and an ionic‐liquid electrolyte, and it is further demonstrated that the tuning of this active material results in a desired balanced p‐ and n‐type electrochemical doping, a high solid‐state photoluminescence quantum yield of 91%, and singlet and triplet trapping on the MR‐TADF guest emitter. The introduction of this designed metal‐free active MR‐TADF material into a LEC, employing air‐stabile electrodes, results in bright blue electroluminescence of 500 cd m−2, which is delivered at a high external quantum efficiency of 3.8% and shows a narrow emission profile with a full‐width‐at‐half‐maximum of 31 nm.
dc.format.extent2477264
dc.language.isoeng
dc.relation.ispartofAdvanced Functional Materialsen
dc.subjectHigh efficiencyen
dc.subjectBlue emissionen
dc.subjectMulti‐resonance thermally activated delayed fluorescenceen
dc.subjectNarrowband emissionen
dc.subjectLight‐emitting electrochemical cellsen
dc.subjectDASen
dc.titleIntroducing MR‐TADF emitters into Light‐Emitting Electrochemical Cells for narrowband and efficient emissionen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. Centre for Energy Ethicsen
dc.identifier.doi10.1002/adfm.202306170
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/R035164/1en


This item appears in the following Collection(s)

Show simple item record