Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorFlokstra, Machiel Geert
dc.contributor.authorStewart, Rhea
dc.contributor.authorYim, Chi Ming
dc.contributor.authorTrainer, Christopher
dc.contributor.authorWahl, Peter
dc.contributor.authorMiller, David N.
dc.contributor.authorSatchell, Nathan
dc.contributor.authorBurnell, Gavin
dc.contributor.authorLuetkens, Hubertus
dc.contributor.authorProkscha, Thomas
dc.contributor.authorSuter, Andreas
dc.contributor.authorMorenzoni, Elvezio
dc.contributor.authorBobkova, Irina V.
dc.contributor.authorBobkov, Alexander M.
dc.contributor.authorLee, Steve
dc.date.accessioned2023-08-22T10:30:05Z
dc.date.available2023-08-22T10:30:05Z
dc.date.issued2023-08-21
dc.identifier292471393
dc.identifier8d0290ac-734a-4ec9-9cce-539678b4e342
dc.identifier85168530351
dc.identifier.citationFlokstra , M G , Stewart , R , Yim , C M , Trainer , C , Wahl , P , Miller , D N , Satchell , N , Burnell , G , Luetkens , H , Prokscha , T , Suter , A , Morenzoni , E , Bobkova , I V , Bobkov , A M & Lee , S 2023 , ' Spin-orbit driven superconducting proximity effects in Pt/Nb thin films ' , Nature Communications , vol. 14 , 5081 . https://doi.org/10.1038/s41467-023-40757-1en
dc.identifier.issn2041-1723
dc.identifier.otherORCID: /0000-0002-8635-1519/work/141227989
dc.identifier.otherORCID: /0000-0002-2020-3310/work/141228607
dc.identifier.urihttps://hdl.handle.net/10023/28216
dc.descriptionAuthors acknowledge the support of the EPSRC through Grants No. EP/I031014/1, No. EP/J01060X, No. EP/J010634/1, No. EP/L015110/1, No.EP/R031924/1, No. EP/R023522/1 and No.EP/L017008/1. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 743791 (SUPERSPIN). All muon experiments were undertaken courtesy of the Paul Scherrer Institut.en
dc.description.abstractManipulating the spin state of thin layers of superconducting material is a promising route to generate dissipationless spin currents in spintronic devices. Approaches typically focus on using thin ferromagnetic elements to perturb the spin state of the superconducting condensate to create spin-triplet correlations. We have investigated simple structures that generate spin-triplet correlations without using ferromagnetic elements. Scanning tunneling spectroscopy and muon-spin rotation are used to probe the local electronic and magnetic properties of our hybrid structures, demonstrating a paramagnetic contribution to the magnetization that partially cancels the Meissner screening. This spin-orbit generated magnetization is shown to derive from the spin of the equal-spin pairs rather than from their orbital motion and is an important development in the field of superconducting spintronics.
dc.format.extent5
dc.format.extent1127354
dc.language.isoeng
dc.relation.ispartofNature Communicationsen
dc.subjectQC Physicsen
dc.subjectDASen
dc.subjectMCCen
dc.subject.lccQCen
dc.titleSpin-orbit driven superconducting proximity effects in Pt/Nb thin filmsen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.institutionUniversity of St Andrews. Centre for Designer Quantum Materialsen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doi10.1038/s41467-023-40757-1
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/I031014/1en
dc.identifier.grantnumberEP/J01060X/1en
dc.identifier.grantnumberEP/L015110/1en
dc.identifier.grantnumberEP/R023522/1en
dc.identifier.grantnumberEP/L017008/1en


This item appears in the following Collection(s)

Show simple item record