Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorBraichenko, Svitlana
dc.contributor.authorGrima, Ramon
dc.contributor.authorSanguinetti, Guido
dc.contributor.editorPetre, Ion
dc.contributor.editorPăun, Andrei
dc.date.accessioned2023-08-18T23:33:09Z
dc.date.available2023-08-18T23:33:09Z
dc.date.issued2022-08-19
dc.identifier283765161
dc.identifier8eb3f401-eb67-4564-b897-9a32994d7cfa
dc.identifier85137004137
dc.identifier.citationBraichenko , S , Grima , R & Sanguinetti , G 2022 , Bayesian learning of effective chemical master equations in crowded intracellular conditions . in I Petre & A Păun (eds) , Computational Methods in Systems Biology : 20th International Conference, CMSB 2022, Bucharest, Romania, September 14–16, 2022, Proceedings . Lecture notes in computer science (including subseries Lecture notes in artificial intelligence and Lecture notes in bioinformatics) , vol. 13447 , Springer Science and Business Media , Cham , pp. 239-258 , 20th International Conference on Computational Methods in Systems Biology, CMSB 2022 , Bucharest , Romania , 14/09/22 . https://doi.org/10.1007/978-3-031-15034-0_12en
dc.identifier.citationconferenceen
dc.identifier.isbn9783031150333
dc.identifier.isbn9783031150340
dc.identifier.issn0302-9743
dc.identifier.otherORCID: /0000-0003-3330-6631/work/131123462
dc.identifier.urihttps://hdl.handle.net/10023/28204
dc.descriptionFunding: supported by Leverhulme Trust.en
dc.description.abstractBiochemical reactions inside living cells often occur in the presence of crowders - molecules that do not participate in the reactions but influence the reaction rates through excluded volume effects. However the standard approach to modelling stochastic intracellular reaction kinetics is based on the chemical master equation (CME) whose propensities are derived assuming no crowding effects. Here, we propose a machine learning strategy based on Bayesian Optimisation utilising synthetic data obtained from spatial cellular automata (CA) simulations (that explicitly model volume-exclusion effects) to learn effective propensity functions for CMEs. The predictions from a small CA training data set can then be extended to the whole range of parameter space describing physiologically relevant levels of crowding by means of Gaussian Process regression. We demonstrate the method on an enzyme-catalyzed reaction and a genetic feedback loop, showing good agreement between the time-dependent distributions of molecule numbers predicted by the effective CME and CA simulations.
dc.format.extent20
dc.format.extent2483626
dc.language.isoeng
dc.publisherSpringer Science and Business Media
dc.relation.ispartofComputational Methods in Systems Biologyen
dc.relation.ispartofseriesLecture notes in computer science (including subseries Lecture notes in artificial intelligence and Lecture notes in bioinformatics)en
dc.subjectCrowdingen
dc.subjectInferenceen
dc.subjectStochastic reactionsen
dc.subjectQA75 Electronic computers. Computer scienceen
dc.subjectQD Chemistryen
dc.subjectQH301 Biologyen
dc.subjectComputer Science(all)en
dc.subjectTheoretical Computer Scienceen
dc.subjectT-NDASen
dc.subjectMCCen
dc.subjectACen
dc.subject.lccQA75en
dc.subject.lccQDen
dc.subject.lccQH301en
dc.titleBayesian learning of effective chemical master equations in crowded intracellular conditionsen
dc.typeConference itemen
dc.contributor.institutionUniversity of St Andrews. School of Biologyen
dc.identifier.doi10.1007/978-3-031-15034-0_12
dc.date.embargoedUntil2023-08-19
dc.identifier.urlhttps://link.springer.com/book/10.1007/978-3-031-15034-0en
dc.identifier.urlhttps://arxiv.org/abs/2205.06268v1en


This item appears in the following Collection(s)

Show simple item record