Show simple item record

Files in this item

Thumbnail
Thumbnail

Item metadata

dc.contributor.authorTino, Christopher J
dc.contributor.authorStüeken, Eva E
dc.contributor.authorArp, Gernot
dc.contributor.authorBöttcher, Michael Ernst
dc.contributor.authorBates, Steven M
dc.contributor.authorLyons, Timothy W
dc.date.accessioned2023-08-15T09:30:05Z
dc.date.available2023-08-15T09:30:05Z
dc.date.issued2023-10-17
dc.identifier291665866
dc.identifierf0444c3f-6076-49f9-a951-e67e52339491
dc.identifier37498995
dc.identifier85167673961
dc.identifier.citationTino , C J , Stüeken , E E , Arp , G , Böttcher , M E , Bates , S M & Lyons , T W 2023 , ' Are large sulfur isotope variations biosignatures in an ancient, impact-induced hydrothermal Mars analog? ' , Astrobiology , vol. 23 , no. 10 , pp. 1027-1044 . https://doi.org/10.1089/ast.2022.0114en
dc.identifier.issn1531-1074
dc.identifier.otherORCID: /0000-0001-6861-2490/work/139965266
dc.identifier.urihttps://hdl.handle.net/10023/28174
dc.descriptionFunding: NASA Fellowship in support of Christopher J. Tino under Cooperative agreement number 80NSSC19K1739 issued through the NASA Office of STEM Engagement. Funding was provided to Timothy W. Lyons through the NASA Astrobiology Institute under Cooperative agreement number NNA15BB03A issued through the Science Mission Directorate and the NASA Interdisciplinary Consortia for Astrobiology Research (ICAR). Eva E. Stüeken acknowledges funding from an NERC Frontiers grant (NE/V010824/1).en
dc.description.abstractDiscrepancies have emerged concerning the application of sulfur stable isotope ratios as a biosignature in impact crater paleolakes. The first in situ δ34S data from Mars at Gale crater display a ∼75‰ range that has been attributed to an abiotic mechanism. Yet biogeochemical studies of ancient environments on Earth generally interpret δ34S fractionations >21‰ as indicative of a biological origin, and studies of δ34S at analog impact crater lakes on Earth have followed the same approach. We performed analyses (including δ34S, total organic carbon wt%, and scanning electron microscope imaging) on multiple lithologies from the Nördlinger Ries impact crater, focusing on hydrothermally altered impact breccias and associated sedimentary lake-fill sequences to determine whether the δ34S properties define a biosignature. The differences in δ34S between the host lithologies may have resulted from thermochemical sulfate reduction, microbial sulfate reduction, hydrothermal equilibrium fractionation, or any combination thereof. Despite abundant samples and instrumental precision currently exclusive to Earth-bound analyses, assertions of biogenicity from δ34S variations >21‰ at the Miocene Ries impact crater are tenuous. This discourages the use of δ34S as a biosignature in similar environments without independent checks that include the full geologic, biogeochemical, and textural context, as well as a comprehensive acknowledgment of alternative hypotheses.
dc.format.extent18
dc.format.extent2002055
dc.format.extent404939
dc.format.extent22354
dc.language.isoeng
dc.relation.ispartofAstrobiologyen
dc.subjectSulfur isotopesen
dc.subjectImpact crateren
dc.subjectHydrothermalen
dc.subjectBiosignatureen
dc.subjectMars analogen
dc.subjectBiogeochemistryen
dc.subjectGE Environmental Sciencesen
dc.subjectDASen
dc.subjectMCCen
dc.subject.lccGEen
dc.titleAre large sulfur isotope variations biosignatures in an ancient, impact-induced hydrothermal Mars analog?en
dc.typeJournal articleen
dc.contributor.sponsorNERCen
dc.contributor.institutionUniversity of St Andrews.School of Earth & Environmental Sciencesen
dc.contributor.institutionUniversity of St Andrews.St Andrews Centre for Exoplanet Scienceen
dc.identifier.doi10.1089/ast.2022.0114
dc.description.statusPeer revieweden
dc.identifier.grantnumberNE/V010824/1en


This item appears in the following Collection(s)

Show simple item record