St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Materials for electrochemiluminescence : TADF, hydrogen-bonding, and aggregation- and crystallization-induced emission luminophores

Thumbnail
View/Open
Chu_2023_Materials_for_electrochemicaluminescence_Chemistry_A_European_J_e202301504_CCBY.pdf (2.578Mb)
Date
06/09/2023
Author
Chu, Kenneth
Ding, Zhifeng
Zysman-Colman, Eli
Keywords
Aggregation-induced emission
Crystallization-induced emission
Electrochemiluminescence (ECL)
Hydrogen bonding
Thermally activated delayed fluorescence
Absolute ECL quantum efficiency
QD Chemistry
MCP
Metadata
Show full item record
Abstract
Electrochemiluminescence (ECL) is a rapidly growing discipline with many analytical applications from immunoassays to single-molecule detection. At the forefront of ECL research is materials chemistry, which looks at engineering new materials and compounds exhibiting enhanced ECL efficiencies compared to conventional fluorescent materials. In this review, we summarize recent molecular design strategies that lead to high efficiency ECL. In particular, we feature recent advances in the use of thermally activated delayed fluorescence (TADF) emitters to produce enhanced electrochemiluminescence. We also document how hydrogen bonding, aggregation, and crystallization can each be recruited in the design of materials showing enhanced electrochemiluminescence.
Citation
Chu , K , Ding , Z & Zysman-Colman , E 2023 , ' Materials for electrochemiluminescence : TADF, hydrogen-bonding, and aggregation- and crystallization-induced emission luminophores ' , Chemistry - A European Journal , vol. 29 , no. 50 , e202301504 . https://doi.org/10.1002/chem.202301504
Publication
Chemistry - A European Journal
Status
Peer reviewed
DOI
https://doi.org/10.1002/chem.202301504
ISSN
0947-6539
Type
Journal item
Rights
Copyright © 2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Description
Authors thank the Natural Sciences and Engineering Research Council Canada (NSERC, DG RGPIN-2018- 06556, DG RGPIN-2023-05337 and SPG STPGP-2016-493924), New Frontiers in Research Fund (NFRFR-2021-00272), Canada Foundation of Innovation/Ontario Innovation Trust (CFI/OIT, 9040) and The University of Western Ontario for the support to this research. KC is an Ontario Graduate Scholar.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/28117

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter