Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorYeates, A. R.
dc.contributor.authorRussell, A. J.B.
dc.contributor.authorHornig, G.
dc.date.accessioned2023-08-04T14:30:09Z
dc.date.available2023-08-04T14:30:09Z
dc.date.issued2021-08-18
dc.identifier291831300
dc.identifierb27370a0-b692-4db5-8777-26e45cea17bf
dc.identifier85113394253
dc.identifier.citationYeates , A R , Russell , A J B & Hornig , G 2021 , ' Evolution of field line helicity in magnetic relaxation ' , Physics of Plasmas , vol. 28 , no. 8 , 082904 . https://doi.org/10.1063/5.0059756en
dc.identifier.issn1070-664X
dc.identifier.otherORCID: /0000-0001-5690-2351/work/139965435
dc.identifier.urihttps://hdl.handle.net/10023/28111
dc.descriptionFunding: This work was facilitated by Leverhulme Trust under Grant No. PRG-2017–169, with additional support from Science and Technology Facilities Council (UK) under consortium Grants Nos. ST/N000714, ST/N000781, and ST/S000321.en
dc.description.abstractPlasma relaxation in the presence of an initially braided magnetic field can lead to self-organization into relaxed states that retain non-trivial magnetic structure. These relaxed states may be in conflict with the linear force-free fields predicted by the classical Taylor theory, and remain to be fully understood. Here, we study how the individual field line helicities evolve during such a relaxation, and show that they provide new insights into the relaxation process. The line helicities are computed for numerical resistive-magnetohydrodynamic simulations of a relaxing braided magnetic field with line-tied boundary conditions, where the relaxed state is known to be non-Taylor. First, our computations confirm recent analytical predictions that line helicity will be predominantly redistributed within the domain, rather than annihilated. Second, we show that self-organization into a relaxed state with two discrete flux tubes may be predicted from the initial line helicity distribution. Third, for this set of line-tied simulations we observe that the sub-structure within each of the final tubes is a state of uniform line helicity. This uniformization of line helicity is consistent with Taylor theory applied to each tube individually. However, it is striking that the line helicity becomes significantly more uniform than the force-free parameter.
dc.format.extent14
dc.format.extent2331043
dc.language.isoeng
dc.relation.ispartofPhysics of Plasmasen
dc.subjectQC Physicsen
dc.subjectCondensed Matter Physicsen
dc.subjectNDASen
dc.subjectMCCen
dc.subject.lccQCen
dc.titleEvolution of field line helicity in magnetic relaxationen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. Applied Mathematicsen
dc.identifier.doi10.1063/5.0059756
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record