Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorTan, Chao Dun
dc.contributor.authorHaehner, Georg
dc.contributor.authorFitzer, Susan
dc.contributor.authorCole, Catherine Sarah
dc.contributor.authorFinch, Adrian Anthony
dc.contributor.authorHintz, Christopher James
dc.contributor.authorHintz, Kenneth
dc.contributor.authorAllison, Nicola
dc.date.accessioned2023-08-02T09:30:06Z
dc.date.available2023-08-02T09:30:06Z
dc.date.issued2023-08-02
dc.identifier290378537
dc.identifierae37f1c9-a2b6-49f6-9153-83e27c5dc477
dc.identifier85168162827
dc.identifier.citationTan , C D , Haehner , G , Fitzer , S , Cole , C S , Finch , A A , Hintz , C J , Hintz , K & Allison , N 2023 , ' The response of coral skeletal nano-structure and hardness to ocean acidification conditions ' , Royal Society Open Science , vol. 10 , no. 8 , 230248 . https://doi.org/10.1098/rsos.230248en
dc.identifier.issn2054-5703
dc.identifier.otherORCID: /0000-0003-3720-1917/work/139964916
dc.identifier.otherORCID: /0000-0002-3689-1517/work/139965113
dc.identifier.otherORCID: /0000-0002-6765-344X/work/139965149
dc.identifier.urihttps://hdl.handle.net/10023/28078
dc.descriptionFunding: Scottish Funding Council - HR09011; UK Natural Environment Research Council - NE/I022973/1.en
dc.description.abstractOcean acidification typically reduces coral calcification rates and can fundamentally alter skeletal morphology. We use atomic force microscopy (AFM) and microindentation to determine how seawater pCO2 affects skeletal structure and Vickers hardness in a Porites lutea coral. At 400 µatm, the skeletal fasciculi are composed of tightly packed bundles of acicular crystals composed of quadrilateral nanograins, approximately 80–300 nm in dimensions. We interpret high adhesion at the nanograin edges as an organic coating. At 750 µatm the crystals are less regular in width and orientation and composed of either smaller/more rounded nanograins than observed at 400 µatm or of larger areas with little variation in adhesion. Coral aragonite may form via ion-by-ion attachment to the existing skeleton or via conversion of amorphous calcium carbonate precursors. Changes in nanoparticle morphology could reflect variations in the sizes of nanoparticles produced by each crystallization pathway or in the contributions of each pathway to biomineralization. We observe no significant variation in Vickers hardness between skeletons cultured at different seawater pCO2. Either the nanograin size does not affect skeletal hardness or the effect is offset by other changes in the skeleton, e.g. increases in skeletal organic material as reported in previous studies.
dc.format.extent15
dc.format.extent2305710
dc.language.isoeng
dc.relation.ispartofRoyal Society Open Scienceen
dc.subjectCaCO3en
dc.subjectMechanical propertiesen
dc.subjectBiomineralisationen
dc.subjectEnvironmental changeen
dc.subjectDASen
dc.subjectSDG 14 - Life Below Wateren
dc.subjectMCCen
dc.titleThe response of coral skeletal nano-structure and hardness to ocean acidification conditionsen
dc.typeJournal articleen
dc.contributor.sponsorNERCen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.contributor.institutionUniversity of St Andrews. Centre for Energy Ethicsen
dc.contributor.institutionUniversity of St Andrews. School of Earth & Environmental Sciencesen
dc.contributor.institutionUniversity of St Andrews. Scottish Oceans Instituteen
dc.contributor.institutionUniversity of St Andrews. St Andrews Isotope Geochemistryen
dc.contributor.institutionUniversity of St Andrews. Marine Alliance for Science & Technology Scotlanden
dc.identifier.doihttps://doi.org/10.1098/rsos.230248
dc.description.statusPeer revieweden
dc.identifier.grantnumberNE/I022973/1en


This item appears in the following Collection(s)

Show simple item record