St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Orbits closeness for slowly mixing dynamical systems

Thumbnail
View/Open
Rousseau_2023_ETDS_Orbits_closeness_CC.pdf (266.4Kb)
Date
24/07/2023
Author
Rousseau, Jerome
Todd, Mike
Keywords
Shortest distance
Longest common substring
Correlation dimension
Inducing schemes
QA Mathematics
T-NDAS
MCP
Metadata
Show full item record
Abstract
Given a dynamical system, we prove that the shortest distance between two n-orbits scales like n to a power even when the system has slow mixing properties, thus building and improving on results of Barros, Liao and the first author [On the shortest distance between orbits and the longest common substring problem. Adv. Math. 344 (2019), 311–339]. We also extend these results to flows. Finally, we give an example for which the shortest distance between two orbits has no scaling limit.
Citation
Rousseau , J & Todd , M 2023 , ' Orbits closeness for slowly mixing dynamical systems ' , Ergodic Theory and Dynamical Systems , vol. FirstView . https://doi.org/10.1017/etds.2023.50
Publication
Ergodic Theory and Dynamical Systems
Status
Peer reviewed
DOI
https://doi.org/10.1017/etds.2023.50
ISSN
0143-3857
Type
Journal article
Rights
Copyright © The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Description
Both authors were partially supported by FCT projects PTDC/MAT-PUR/28177/2017 and by CMUP (UIDB/00144/2020), which is funded by FCT with national (MCTES) and European structural funds through the programs FEDER, under the partnership agreement PT2020. JR was also partially supported by CNPq and PTDC/MATPUR/4048/2021, and with national funds.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/28017

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter