Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorChoi, Hyun June
dc.contributor.authorBruce, Elliott L.
dc.contributor.authorKencana, Kevin S.
dc.contributor.authorHong, Jingeon
dc.contributor.authorWright, Paul A.
dc.contributor.authorHong, Suk Bong
dc.date.accessioned2023-07-17T09:30:10Z
dc.date.available2023-07-17T09:30:10Z
dc.date.issued2023-09-04
dc.identifier287673956
dc.identifiereef50668-dbc2-4a6a-ae3f-ad5821d80f20
dc.identifier85163646539
dc.identifier.citationChoi , H J , Bruce , E L , Kencana , K S , Hong , J , Wright , P A & Hong , S B 2023 , ' Highly cooperative CO 2 adsorption via a cation crowding mechanism on a cesium-exchanged phillipsite zeolite ' , Angewandte Chemie International Edition , vol. 62 , no. 36 , e202305816 . https://doi.org/10.1002/anie.202305816en
dc.identifier.issn1433-7851
dc.identifier.otherRIS: urn:B05668147CE41C015DE5D876A1B1D2DE
dc.identifier.otherORCID: /0000-0002-4243-9957/work/138327210
dc.identifier.urihttps://hdl.handle.net/10023/27962
dc.descriptionFunding: This work was supported by the National Creative Research Initiative Program (2021R1A3A3088711) and the Sejong Science Fellowship (H.J.C; 2021R1C1C2013556) through the National Research Foundation of Korea funded by the Korea government (MSIT) and the EPSRC (EP/R512199/1) for funding an NPIF PhD scholarship (E.L.B.).en
dc.description.abstractAn understanding of the CO2 adsorption mechanisms on small-pore zeolites is of practical importance in the development of more efficient adsorbents for the separation of CO2 from N2 or CH4. Here we report that the CO2 isotherms at 25–75 °C on cesium-exchanged phillipsite zeolite with a Si/Al ratio of 2.5 (Cs-PHI-2.5) are characterized by a rectilinear step shape: limited uptake at low CO2 pressure (PCO2) is followed by highly cooperative uptake at a critical pressure, above which adsorption rapidly approaches capacity (2.0 mmol g−1). Structural analysis reveals that this isotherm behavior is attributed to the high concentration and large size of Cs+ ions in dehydrated Cs-PHI-2.5. This results in Cs+ cation crowding and subsequent dispersal at a critical loading of CO2, which allows the PHI framework to relax to its wide pore form and enables its pores to fill with CO2 over a very narrow range of PCO2. Such a highly cooperative phenomenon has not been observed for other zeolites.
dc.format.extent9
dc.format.extent1582503
dc.language.isoeng
dc.relation.ispartofAngewandte Chemie International Editionen
dc.subjectAluminosilicatesen
dc.subjectCarbon dioxide adsorptionen
dc.subjectCrowding mechanismen
dc.subjectStructure elucidationen
dc.subjectZeolitesen
dc.subjectQD Chemistryen
dc.subjectDASen
dc.subjectMCCen
dc.subject.lccQDen
dc.titleHighly cooperative CO2 adsorption via a cation crowding mechanism on a cesium-exchanged phillipsite zeoliteen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.identifier.doihttps://doi.org/10.1002/anie.202305816
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record