Conformational tuning improves the stability of spirocyclic nitroxides with long paramagnetic relaxation times
Abstract
Nitroxides are widely used as probes and polarization transfer agents in spectroscopy and imaging. These applications require high stability towards reducing biological environments, as well as beneficial relaxation properties. While the latter is provided by spirocyclic groups on the nitroxide scaffold, such systems are not in themselves robust under reducing conditions. In this work, we introduce a strategy for stability enhancement through conformational tuning, where incorporating additional substituents on the nitroxide ring effects a shift towards highly stable closed spirocyclic conformations, as indicated by X-ray crystallography and density functional theory (DFT) calculations. Closed spirocyclohexyl nitroxides exhibit dramatically improved stability towards reduction by ascorbate, while maintaining long relaxation times in electron paramagnetic resonance (EPR) spectroscopy. These findings have important implications for the future design of new nitroxide-based spin labels and imaging agents.
Citation
Sowiński , M P , Gahlawat , S , Lund , B A , Warnke , A-L , Hopmann , K H , Lovett , J E & Haugland , M M 2023 , ' Conformational tuning improves the stability of spirocyclic nitroxides with long paramagnetic relaxation times ' , Communications Chemistry , vol. 6 , no. 1 , 111 . https://doi.org/10.1038/s42004-023-00912-7
Publication
Communications Chemistry
Status
Peer reviewed
ISSN
2399-3669Type
Journal article
Rights
Copyright © The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Description
Funding: M.M.H. and A.-L.W. thank the Tromsø Research Foundation and UiT Centre for New Antibacterial Strategies (CANS) for a start-up grant (TFS project ID: 18_CANS). K.H.H. and S.G. thank the Research Council of Norway (No. 300769) and Sigma2 (No. nn9330k and nn4654k), and the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 859910. J.E.L. thanks Drs Hassane El Mkami and Robert I. Hunter for technical assistance, the BBSRC (BB/T017740/1) and the Wellcome Trust (099149/Z/12/Z) for the Q-band EPR spectrometer, the Royal Society for a University Research Fellowship and Research Grant RG120645 for the benchtop spectrometer. B.A.L. thanks The Research Council of Norway for the Centre of Excellence and project grants (Grant Nos. 262695 and 274858).Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.