Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorMaughan, Philip A.
dc.contributor.authorNaden, Aaron Benjamin
dc.contributor.authorIrvine, John
dc.contributor.authorArmstrong, Anthony Robert
dc.date.accessioned2023-06-06T10:30:09Z
dc.date.available2023-06-06T10:30:09Z
dc.date.issued2023-07-01
dc.identifier286417594
dc.identifier4005d1d2-6cf4-4543-ab9d-f71ff2192247
dc.identifier85160866897
dc.identifier.citationMaughan , P A , Naden , A B , Irvine , J & Armstrong , A R 2023 , ' High energy density Li/Ni/Co-free O3/P2 sodium layered oxide intergrowth for sodium-ion batteries ' , Batteries & Supercaps , vol. 6 , no. 7 , e202300089 . https://doi.org/10.1002/batt.202300089en
dc.identifier.issn2566-6223
dc.identifier.otherRIS: urn:BE20D64EBB1944CBA4F6B71DDAF42053
dc.identifier.otherORCID: /0000-0002-8394-3359/work/136696097
dc.identifier.otherORCID: /0000-0003-2876-6991/work/136696400
dc.identifier.otherORCID: /0000-0003-1937-0936/work/136696838
dc.identifier.urihttps://hdl.handle.net/10023/27751
dc.descriptionFunding: This work was supported by the Faraday Institution (grant number FIRG018). The authors would like to thank Dr David Rochester at Lancaster University for conducting the ICP-OES experiments. A.B.N. would like to acknowledge funding by the Engineering and Physical Sciences Research Council under grant numbers EP/L017008/1, EP/R023751/1 and EP/T019298/1 for the electron microscopy analysis.en
dc.description.abstractSodium-ion batteries have attracted widespread interest due to the potential for providing safe and cheap energy storage. However, large scale use of Na-ion batteries is limited by insufficient performance from positive electrode materials, while also avoiding the use of expensive and toxic elements. Here, we present a bi-phasic sodium layered oxide material, O3/P2-Na0.75Mn0.35Fe0.35Ti0.1Al0.1Cu0.1O2, free of Li, Ni, and Co, which delivered high energy densities up to 420 Wh kg-1, discharge potential of 3.03 V, and high capacity retention of 80% over 70 cycles in half cells (292 Wh Kg-1 in full cells). Crucially, the high Na content is sufficient to provide high energy densities in full cell format. The intergrown nature of the material was confirmed by TEM and SAED analysis, while ex-situ XRD studies revealed the two phases undergo complementary c-parameter evolution, reducing overall volume change. These results demonstrate the potential for future commercialisation of bi-phasic materials utilising only Earth abundant elements.
dc.format.extent9
dc.format.extent1923518
dc.language.isoeng
dc.relation.ispartofBatteries & Supercapsen
dc.subjectLayered compoundsen
dc.subjectPositive electrode materialen
dc.subjectSodiumen
dc.subjectBiphasic materialen
dc.subjectLow cost materialen
dc.subjectQD Chemistryen
dc.subjectNDASen
dc.subjectMCCen
dc.subject.lccQDen
dc.titleHigh energy density Li/Ni/Co-free O3/P2 sodium layered oxide intergrowth for sodium-ion batteriesen
dc.typeJournal articleen
dc.contributor.sponsorThe Faraday Institutionen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. Institute of Behavioural and Neural Sciencesen
dc.contributor.institutionUniversity of St Andrews. Centre for Energy Ethicsen
dc.contributor.institutionUniversity of St Andrews. Centre for Designer Quantum Materialsen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.identifier.doi10.1002/batt.202300089
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/T005602/1en
dc.identifier.grantnumberep/l017008/1en
dc.identifier.grantnumberEP/R023751/1en
dc.identifier.grantnumberEP/T019298/1en


This item appears in the following Collection(s)

Show simple item record