Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorYang, Linjie
dc.contributor.authorXuan, Wenye
dc.contributor.authorWebster, David E. J.
dc.contributor.authorKrishnan Jagadamma, Lethy
dc.contributor.authorLi, Teng
dc.contributor.authorMiller, David N.
dc.contributor.authorCordes, David B.
dc.contributor.authorSlawin, Alexandra M. Z.
dc.contributor.authorTurnbull, Graham
dc.contributor.authorSamuel, Ifor D. W.
dc.contributor.authorChen, Hsin-Yi Tiffany
dc.contributor.authorLightfoot, Philip
dc.contributor.authorDyer, Matthew S.
dc.contributor.authorPayne, Julia L.
dc.date.accessioned2023-05-03T14:30:10Z
dc.date.available2023-05-03T14:30:10Z
dc.date.issued2023-05-23
dc.identifier283994729
dc.identifiercd3557f4-2942-4d50-aa57-c5f15d44766b
dc.identifier85159618374
dc.identifier.citationYang , L , Xuan , W , Webster , D E J , Krishnan Jagadamma , L , Li , T , Miller , D N , Cordes , D B , Slawin , A M Z , Turnbull , G , Samuel , I D W , Chen , H-Y T , Lightfoot , P , Dyer , M S & Payne , J L 2023 , ' Manipulation of structure and optoelectronic properties through bromine inclusion in a layered lead bromide perovskite ' , Chemistry of Materials , vol. 35 , no. 10 , pp. 3801–3814 . https://doi.org/10.1021/acs.chemmater.2c03125en
dc.identifier.issn0897-4756
dc.identifier.otherORCID: /0000-0002-9527-6418/work/134491311
dc.identifier.otherORCID: /0000-0002-4339-2484/work/134491330
dc.identifier.otherORCID: /0000-0002-5366-9168/work/134491414
dc.identifier.otherORCID: /0000-0003-3324-6018/work/134491441
dc.identifier.otherORCID: /0000-0001-7048-3982/work/134491532
dc.identifier.urihttps://hdl.handle.net/10023/27499
dc.descriptionFunding: J.L.P. thanks the University of St Andrews for funding and the Carnegie Trust for a Research Incentive Grant (RIG008653). The authors also thank EPSRC for funding (EP/T019298/1, EP/R023751/1 and EP/V034138/1). L.K.J. thanks UKRI for a Future Leaders Fellowship (MR/T022094/1).en
dc.description.abstractOne of the great advantages of organic–inorganic metal halides is that their structures and properties are highly tuneable and this is important when optimizing materials for photovoltaics or other optoelectronic devices. One of the most common and effective ways of tuning the electronic structure is through anion substitution. Here, we report the inclusion of bromine into the layered perovskite [H3N(CH2)6NH3]PbBr4 to form [H3N(CH2)6NH3]PbBr4·Br2, which contains molecular bromine (Br2) intercalated between the layers of corner-sharing PbBr6 octahedra. Bromine intercalation in [H3N(CH2)6NH3]PbBr4·Br2 results in a decrease in the band gap of 0.85 eV and induces a structural transition from a Ruddlesden–Popper-like to Dion–Jacobson-like phase, while also changing the conformation of the amine. Electronic structure calculations show that Br2 intercalation is accompanied by the formation of a new band in the electronic structure and a significant decrease in the effective masses of around two orders of magnitude. This is backed up by our resistivity measurements that show that [H3N(CH2)6NH3]PbBr4·Br2 has a resistivity value of one order of magnitude lower than [H3N(CH2)6NH3]PbBr4, suggesting that bromine inclusion significantly increases the mobility and/or carrier concentration in the material. This work highlights the possibility of using molecular inclusion as an alternative tool to tune the electronic properties of layered organic–inorganic perovskites, while also being the first example of molecular bromine inclusion in a layered lead halide perovskite. By using a combination of crystallography and computation, we show that the key to this manipulation of the electronic structure is the formation of halogen bonds between the Br2 and Br in the [PbBr4]∞ layers, which is likely to have important effects in a range of organic–inorganic metal halides.
dc.format.extent14
dc.format.extent6153143
dc.language.isoeng
dc.relation.ispartofChemistry of Materialsen
dc.subjectQD Chemistryen
dc.subjectDASen
dc.subjectMCCen
dc.subject.lccQDen
dc.titleManipulation of structure and optoelectronic properties through bromine inclusion in a layered lead bromide perovskiteen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Centre for Energy Ethicsen
dc.contributor.institutionUniversity of St Andrews. Energy Harvesting Research Groupen
dc.contributor.institutionUniversity of St Andrews. Institute of Behavioural and Neural Sciencesen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.contributor.institutionUniversity of St Andrews. Sir James Mackenzie Institute for Early Diagnosisen
dc.contributor.institutionUniversity of St Andrews. Centre for Biophotonicsen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doihttps://doi.org/10.1021/acs.chemmater.2c03125
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/R023751/1en
dc.identifier.grantnumberEP/T019298/1en


This item appears in the following Collection(s)

Show simple item record