Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorXu, Min
dc.contributor.authorCao, Ran
dc.contributor.authorWu, Shitao
dc.contributor.authorLee, JinGoo
dc.contributor.authorChen, Di
dc.contributor.authorIrvine, John T. S.
dc.date.accessioned2023-04-19T09:30:11Z
dc.date.available2023-04-19T09:30:11Z
dc.date.issued2023-06-28
dc.identifier284258025
dc.identifiera3af3702-41d4-4c2f-a0ef-bb9f972eacd0
dc.identifier85153173831
dc.identifier.citationXu , M , Cao , R , Wu , S , Lee , J , Chen , D & Irvine , J T S 2023 , ' Nanoparticle exsolution via electrochemical switching in perovskite fibers for solid oxide fuel cell electrodes ' , Journal of Materials Chemistry A , vol. 11 , no. 24 , pp. 13007-13015 . https://doi.org/10.1039/d3ta00535fen
dc.identifier.issn2050-7488
dc.identifier.otherJisc: 1025943
dc.identifier.otherpublisher-id: d3ta00535f
dc.identifier.otherORCID: /0000-0002-8394-3359/work/133727424
dc.identifier.urihttps://hdl.handle.net/10023/27431
dc.descriptionFunding: The authors thank the National Key Research and Development Program of China (no. 2021YFA0718900). They also thank the EPSRC for a Critical Mass project EP/R023522/1 and Electron Microscopy provision EP/R023751/1, EP/L017008/1; they also appreciate the support from National Research Foundation of Korea (NRF) grant funded by Korea government (MSIT) (no. 2021R1A2C2092130). Min acknowledges support from China Scholarship Council (no. 201706070126).en
dc.description.abstractMetal nanoparticles support materials play a crucial role in many fields, including energy conversion/storage, catalysis and photochemistry. Here, the exsolution is reported as an in situ method to fabricate metal nanoparticles supported on perovskite (La0.52Ca0.28Ni0.06Ti0.94O3) powder and fiber materials. Significantly decreased polarisation resistance can be achieved by applying electrochemical switching within 3 min on the fiber electrode fuel cell to facilitate the exsolution. The fuel cell activated by electrochemical switching under wet hydrogen shows a promising performance with a maximum output power density of about 380 mW cm−2 at 900 °C in hydrogen. The phase-field model shows that the exsolution under extreme low oxygen partial pressure induced by electrochemical switching performs faster nucleation than the chemical-reduced case. This work provides a further understanding of electrochemically driven exsolution with fiber structure platform and simulation with phase-field models.
dc.format.extent9
dc.format.extent1420948
dc.language.isoeng
dc.relation.ispartofJournal of Materials Chemistry Aen
dc.subjectQC Physicsen
dc.subjectQD Chemistryen
dc.subjectNDASen
dc.subjectMCCen
dc.subject.lccQCen
dc.subject.lccQDen
dc.titleNanoparticle exsolution via electrochemical switching in perovskite fibers for solid oxide fuel cell electrodesen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. Centre for Energy Ethicsen
dc.contributor.institutionUniversity of St Andrews. Centre for Designer Quantum Materialsen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.identifier.doihttps://doi.org/10.1039/d3ta00535f
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/R023522/1en
dc.identifier.grantnumberEP/R023751/1en
dc.identifier.grantnumberep/l017008/1en


This item appears in the following Collection(s)

Show simple item record