Thermodynamics of a fast-moving Greenlandic outlet glacier revealed by fiber-optic distributed temperature sensing
Abstract
Measurements of ice temperature provide crucial constraints on ice viscosity and the thermodynamic processes occurring within a glacier. However, such measurements are presently limited by a small number of relatively coarse-spatial-resolution borehole records, especially for ice sheets. Here, we advance our understanding of glacier thermodynamics with an exceptionally high-vertical-resolution (~0.65 m), distributed-fiber-optic temperature-sensing profile from a 1043-m borehole drilled to the base of Sermeq Kujalleq (Store Glacier), Greenland. We report substantial but isolated strain heating within interglacial-phase ice at 208 to 242 m depth together with strongly heterogeneous ice deformation in glacial-phase ice below 889 m. We also observe a high-strain interface between glacial- and interglacial-phase ice and a 73-m-thick temperate basal layer, interpreted as locally formed and important for the glacier's fast motion. These findings demonstrate notable spatial heterogeneity, both vertically and at the catchment scale, in the conditions facilitating the fast motion of marine-terminating glaciers in Greenland.
Citation
Law , R , Christoffersen , P , Hubbard , B , Doyle , S H , Chudley , T R , Schoonman , C M , Bougamont , M , des Tombe , B , Schilperoort , B , Kechavarzi , C , Booth , A & Young , T J 2021 , ' Thermodynamics of a fast-moving Greenlandic outlet glacier revealed by fiber-optic distributed temperature sensing ' , Science Advances , vol. 7 , no. 20 , eabe7136 . https://doi.org/10.1126/sciadv.abe7136
Publication
Science Advances
Status
Peer reviewed
ISSN
2375-2548Type
Journal article
Rights
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).
Description
Funding: This research was funded by the European Research Council as part of the RESPONDER project under the European Union’s Horizon 2020 research and innovation program (grant 683043). R.L. and T.R.C. were supported by Natural Environment Research Council Doctoral Training Partnership studentships (grant NE/ L002507/1). B.H. was supported by a HEFCW/Aberystwyth University Capital Equipment Grant.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.