St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermodynamics of a fast-moving Greenlandic outlet glacier revealed by fiber-optic distributed temperature sensing

Thumbnail
View/Open
Law_2023_SA_Thermodynamics_glacier_CC.pdf (1.194Mb)
Date
14/05/2021
Author
Law, Robert
Christoffersen, Poul
Hubbard, Bryn
Doyle, Samuel H
Chudley, Thomas R
Schoonman, Charlotte M
Bougamont, Marion
des Tombe, Bas
Schilperoort, Bart
Kechavarzi, Cedric
Booth, Adam
Young, Tun Jan
Keywords
GB Physical geography
GE Environmental Sciences
DAS
SDG 14 - Life Below Water
MCC
Metadata
Show full item record
Abstract
Measurements of ice temperature provide crucial constraints on ice viscosity and the thermodynamic processes occurring within a glacier. However, such measurements are presently limited by a small number of relatively coarse-spatial-resolution borehole records, especially for ice sheets. Here, we advance our understanding of glacier thermodynamics with an exceptionally high-vertical-resolution (~0.65 m), distributed-fiber-optic temperature-sensing profile from a 1043-m borehole drilled to the base of Sermeq Kujalleq (Store Glacier), Greenland. We report substantial but isolated strain heating within interglacial-phase ice at 208 to 242 m depth together with strongly heterogeneous ice deformation in glacial-phase ice below 889 m. We also observe a high-strain interface between glacial- and interglacial-phase ice and a 73-m-thick temperate basal layer, interpreted as locally formed and important for the glacier's fast motion. These findings demonstrate notable spatial heterogeneity, both vertically and at the catchment scale, in the conditions facilitating the fast motion of marine-terminating glaciers in Greenland.
Citation
Law , R , Christoffersen , P , Hubbard , B , Doyle , S H , Chudley , T R , Schoonman , C M , Bougamont , M , des Tombe , B , Schilperoort , B , Kechavarzi , C , Booth , A & Young , T J 2021 , ' Thermodynamics of a fast-moving Greenlandic outlet glacier revealed by fiber-optic distributed temperature sensing ' , Science Advances , vol. 7 , no. 20 , eabe7136 . https://doi.org/10.1126/sciadv.abe7136
Publication
Science Advances
Status
Peer reviewed
DOI
https://doi.org/10.1126/sciadv.abe7136
ISSN
2375-2548
Type
Journal article
Rights
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).
Description
Funding: This research was funded by the European Research Council as part of the RESPONDER project under the European Union’s Horizon 2020 research and innovation program (grant 683043). R.L. and T.R.C. were supported by Natural Environment Research Council Doctoral Training Partnership studentships (grant NE/ L002507/1). B.H. was supported by a HEFCW/Aberystwyth University Capital Equipment Grant.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/27372

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter