St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rapid basal melting of the Greenland Ice Sheet from surface meltwater drainage

Thumbnail
View/Open
Young_2023_PNAS_Rapid_basal_CC.pdf (2.011Mb)
Date
08/03/2022
Author
Young, Tun Jan
Christoffersen, Poul
Bougamont, Marion
Tulaczyk, Slawek M
Hubbard, Bryn
Mankoff, Kenneth D
Nicholls, Keith W
Stewart, Craig L
Keywords
Climate change
Radio echo sounding
Greenland
Glaciology
Ice sheets
GB Physical geography
GE Environmental Sciences
DAS
SDG 13 - Climate Action
MCC
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Subglacial hydrologic systems regulate ice sheet flow, causing acceleration or deceleration, depending on hydraulic efficiency and the rate at which surface meltwater is delivered to the bed. Because these systems are rarely observed, ice sheet basal drainage represents a poorly integrated and uncertain component of models used to predict sea level changes. Here, we report radar-derived basal melt rates and unexpectedly warm subglacial conditions beneath a large Greenlandic outlet glacier. The basal melt rates averaged 14 mm ⋅d-1 over 4 months, peaking at 57 mm ⋅d-1 when basal water temperature reached +0.88∘C in a nearby borehole. We attribute both observations to the conversion of potential energy of surface water to heat in the basal drainage system, which peaked during a period of rainfall and intense surface melting. Our findings reveal limitations in the theory of channel formation, and we show that viscous dissipation far surpasses other basal heat sources, even in a distributed, high-pressure system.
Citation
Young , T J , Christoffersen , P , Bougamont , M , Tulaczyk , S M , Hubbard , B , Mankoff , K D , Nicholls , K W & Stewart , C L 2022 , ' Rapid basal melting of the Greenland Ice Sheet from surface meltwater drainage ' , Proceedings of the National Academy of Sciences of the United States of America , vol. 119 , no. 10 , e2116036119 . https://doi.org/10.1073/pnas.2116036119
Publication
Proceedings of the National Academy of Sciences of the United States of America
Status
Peer reviewed
DOI
https://doi.org/10.1073/pnas.2116036119
ISSN
0027-8424
Type
Journal article
Rights
Copyright © 2022 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).
Description
Funding: This research was funded by the European Research Council under the European Union’s Horizon 2020 research and innovation program (Grant 683043). P.C., M.B., and B.H. were supported by the Natural Environment Research Council (Grants NE/K005871/1 and NE/K006126). B.H. was also supported by the Higher Education Funding Council for Wales and an Aberystwyth University Capital Equipment Grant.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/27371

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter