St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Controllable surfactant-directed zeolitic-imidazolate-8 growth on swollen 2D zeolites

Thumbnail
View/Open
Netzsch_2023_APL_M_Controllble_surfactant_CC.pdf (7.854Mb)
Date
22/03/2023
Author
Netzsch, Philip
Ettlinger, Romy
Morris, Russell E.
Funder
European Research Council
EPSRC
EPSRC
Grant ID
787073
EP/T019298/1
EP/R023751/1
Keywords
DAS
MCP
Metadata
Show full item record
Abstract
To meet society’s need for more and more specialized materials, this work focuses on the preparation of porous metal–organic framework (MOF)–zeolite hybrid materials based on two 2D zeolites, namely, IPC-1P (Institute of Physical Chemistry - 1 Precursor) and the metal–organic framework ZIF-8 (Zeolitic Imidazolate Framework-8). Using the previously well-established assembly–disassembly–organization–reassembly method, the zeolite was (i) synthesized, (ii) hydrolyzed to a layered zeolite, (iii) the interlayer distance was increased using the swelling agent cetyltrimethylammonium chloride, and (iv) nanocrystals of ZIF-8 were grown stepwise on the zeolite surface but predominantly at the edges of the crystallites where the openings to the interlayer region are located. This selective MOF growth and attachment was facilitated by a combination of intercalation of the metal ions and the swelling agent between the zeolite layers. The influence of the solvent and the number of additional steps on the ZIF-8 growth on the zeolite was systematically investigated, and the synthesis protocol was successfully adapted to a further two-dimensional silicate RUB-18 (Ruhr-Universität Bochum - 18). This paves the way toward the controlled preparation of more MOF–zeolite hybrid materials, which might provide interesting properties for future applications.
Citation
Netzsch , P , Ettlinger , R & Morris , R E 2023 , ' Controllable surfactant-directed zeolitic-imidazolate-8 growth on swollen 2D zeolites ' , APL Materials , vol. 11 , no. 3 , 031115 . https://doi.org/10.1063/5.0139673
Publication
APL Materials
Status
Peer reviewed
DOI
https://doi.org/10.1063/5.0139673
ISSN
2166-532X
Type
Journal article
Rights
Copyright © 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Description
The authors would like to thank the European Research Council for funding opportunities under Advanced Grant No. 787073. The EPSRC Light Element Analysis Facility under Grant No. EP/T019298/1 and the EPSRC Strategic Equipment Resource under Grant No. EP/R023751/1 are gratefully acknowledged.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/27340

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter