St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Highly efficient polaritonic light-emitting diodes with angle-independent narrowband emission

Thumbnail
View/Open
Mischok_2023_NP_Angle_independentnarrowband_CC.pdf (1.826Mb)
Date
16/03/2023
Author
Mischok, Andreas
Hillebrandt, Sabina
Kwon, Seonil
Gather, Malte C.
Funder
European Research Council
Grant ID
640012
Keywords
QC Physics
DAS
MCP
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Angle-independent narrowband emission is required for many optoelectronic devices, ranging from high-definition displays to sensors. However, emerging materials for electroluminescent devices, such as organics and perovskites, show spectrally broad emission due to intrinsic disorder. Coupling this emission to an optical resonance reduces the linewidth, but at the cost of inheriting the severe angular dispersion of the resonator. Strongly coupling a dispersionless exciton state to a narrowband optical microcavity could overcome this issue; however, electrically pumped emission from the resulting polaritons is typically hampered by poor efficiencies. Here we present a universal concept for polariton-based emission from organic light-emitting diodes by introducing an assistant strong coupling layer, thereby avoiding quenching-induced efficiency losses. We realize red- and green-emitting, narrowband (full-width at half-maximum of less than 20 nm) and spectrally tunable polaritonic organic light-emitting diodes with up to 10% external quantum efficiency and high luminance (>20,000 cd m−2 at 5 V). By optimizing cavity detuning and coupling strength, we achieve emission with ultralow dispersion (<10 nm spectral shift at 60° tilt). These results may have wide-reaching implications for on-demand polariton emission and demonstrate the practical relevance of strong light–matter coupling for next-generation optoelectronics, particularly display technology.
Citation
Mischok , A , Hillebrandt , S , Kwon , S & Gather , M C 2023 , ' Highly efficient polaritonic light-emitting diodes with angle-independent narrowband emission ' , Nature Photonics , vol. First Online . https://doi.org/10.1038/s41566-023-01164-6
Publication
Nature Photonics
Status
Peer reviewed
DOI
https://doi.org/10.1038/s41566-023-01164-6
ISSN
1749-4885
Type
Journal article
Rights
Copyright © The Author(s) 2023. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Description
Authors acknowledge funding by the Volkswagen Foundation (no. 93404; M.C.G.), the Leverhulme Trust (RPG-2017-213; M.C.G), the European Research Council under the European Union Horizon 2020 Framework Programme (FP/2014-2020)/ERC grant agreement no. 640012 (ABLASE; M.C.G) and the Alexander von Humboldt Foundation (Humboldt Professorship; M.C.G.). A.M. acknowledges funding through an individual fellowship of the Deutsche Forschungsgemeinschaft (404587082; A.M.) and from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement no. 101023743 (PolDev; A.M.).
Collections
  • University of St Andrews Research
URL
https://arxiv.org/abs/2207.01248
https://www.nature.com/articles/s41566-023-01164-6
URI
http://hdl.handle.net/10023/27209

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter