Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.advisorBaddeley, Christopher J.
dc.contributor.authorMegginson, Rory
dc.coverage.spatial137en_US
dc.date.accessioned2023-03-03T11:18:18Z
dc.date.available2023-03-03T11:18:18Z
dc.date.issued2022-11-18
dc.identifier.urihttps://hdl.handle.net/10023/27093
dc.description.abstractThe production of a new catalysts for the production of furfuryl alcohol from furfural is a topic of interest as it would alleviate the need for the use of a toxic copper chromate catalyst. A new coupled AuCu catalyst system has been developed for the conversion of furfural to furfuryl alcohol, using 2-butanol as a source of hydrogen atoms. In this study the adsorption characteristics of 2-butanol and furfural will be studied on a number of Au Cu systems as well as the effect of alloying behaviour of Au and Cu has on the catalyst process. Initial experiments were carried out on the formation of Cu multilayers on the Au (111) surface using scanning tunnelling microscopy (STM) and photoemission spectroscopy (PES). The structure and growth modes of the various layers. Experiments were carried out to attempt to form an alloy on the surface leading to the creation of a 1:1 ordered surface alloy. The adsorption of 2-butanol and furfural was then studied on these multilayer and alloy systems using thermal desorption spectroscopy (TDS), high-resolution electronic energy loss spectroscopy (HREELS) and STM. The adsorption was also studied on the ordered alloy system. The alloying behaviour of Au and Cu nanoparticles was studied on manufactured SiO₂ and CeO₂ films. The structure of the manufactured catalyst as well their behaviour with annealing was studied using atomic force microscopy (AFM), X-ray photoemission spectroscopy (XPS) and medium energy ion scattering (MEIS). The adsorption behaviour of the 2-butanol and furfural was studied on catalyst provided by our collaborators at Herriot-Watt University using diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) as mass spectroscopy (MS) of the outflow gas.en_US
dc.language.isoenen_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSurface scienceen_US
dc.subjectCopperen_US
dc.subjectGolden_US
dc.subject.lccQD506.M4S8
dc.subject.lcshSurface chemistryen
dc.subject.lcshFurfuralen
dc.subject.lcshHydrogenationen
dc.titleA study of copper and gold systems for the hydrogen-free hydrogenation of furfural to furfuryl alcoholen_US
dc.typeThesisen_US
dc.contributor.sponsorEngineering and Physical Sciences Research Council (EPSRC)en_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US
dc.rights.embargodate2023-12-18
dc.rights.embargoreasonThesis restricted in accordance with University regulations. Restricted until 18th December 2023en
dc.identifier.doihttps://doi.org/10.17630/sta/324
dc.identifier.grantnumberEP/506631/1en_US


The following licence files are associated with this item:

    This item appears in the following Collection(s)

    Show simple item record

    Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
    Except where otherwise noted within the work, this item's licence for re-use is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International