Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorGhosh, Paheli
dc.contributor.authorBruckbauer, Jochen
dc.contributor.authorTrager-Cowan, Carol
dc.contributor.authorKrishnan Jagadamma, Lethy
dc.date.accessioned2023-02-25T00:42:08Z
dc.date.available2023-02-25T00:42:08Z
dc.date.issued2022-08-01
dc.identifier279188131
dc.identifierb36e400b-6a51-4cde-a0bd-0431a09dd0a6
dc.identifier85127753377
dc.identifier000793253300003
dc.identifier.citationGhosh , P , Bruckbauer , J , Trager-Cowan , C & Krishnan Jagadamma , L 2022 , ' Crystalline grain engineered CsPbIBr 2 films for indoor photovoltaics ' , Applied Surface Science , vol. 592 , 152865 . https://doi.org/10.1016/j.apsusc.2022.152865en
dc.identifier.issn0169-4332
dc.identifier.otherRIS: urn:1B93054C917783247CF15349FFA6BF4E
dc.identifier.otherORCID: /0000-0002-4339-2484/work/111974391
dc.identifier.otherORCID: /0000-0001-9870-6842/work/111975985
dc.identifier.urihttps://hdl.handle.net/10023/27060
dc.descriptionFunding: LKJ acknowledges funding from UKRI-FLF through MR/T022094/1. LKJ and PG acknowledge Dr Ben F. Spencer for the XPS data acquisition, which was supported by the Henry Royce Institute, funded through UK EPSRC grants EP/R00661X/1, EP/P025021/1 and EP/P025498/1 and Dr Julia L. Payne for all the support with the XRD and FTIR measurements. JB and CTC acknowledge funding from UK EPSRC grant EP/P015719/1.en
dc.description.abstractIndoor photovoltaic devices have garnered profound research attention in recent years due to their prospects of powering ‘smart’ electronics for the Internet of Things (IoT). Here it is shown that all-inorganic Cs-based halide perovskites are promising for indoor light harvesting due to their wide bandgap matched to the indoor light spectra. Highly crystalline and compact CsPbIBr2 perovskite based photovoltaic devices have demonstrated a power conversion efficiency (PCE) of 14.1% under indoor illumination of 1000 lx and 5.9% under 1 Sun. This study revealed that a reduction in grain misorientation, as well as suppression of defects in the form of metallic Pb in the perovskite film are crucial for maximising the photovoltaic properties of CsPbIBr2 based devices. It was demonstrated that a pinhole free CsPbIBr2/Spiro-OMeTAD interface preserves the perovskite α phase and enhances the air stability of the CsPbIBr2 devices. These devices, despite being unencapsulated, retained > 55% of the maximum PCE even when stored under 30% relative humidity for a shelf-life duration of 40 days and is one of the best stability data reported so far for CsPbIBr2 devices.
dc.format.extent10
dc.format.extent2508177
dc.language.isoeng
dc.relation.ispartofApplied Surface Scienceen
dc.subjectAll-inorganic perovskiteen
dc.subjectEBSDen
dc.subjectGrain misorientationen
dc.subjectInternet of Thingsen
dc.subjectMixed halidesen
dc.subjectXPSen
dc.subjectQA75 Electronic computers. Computer scienceen
dc.subjectQC Physicsen
dc.subjectDASen
dc.subjectSDG 7 - Affordable and Clean Energyen
dc.subjectACen
dc.subjectMCCen
dc.subject.lccQA75en
dc.subject.lccQCen
dc.titleCrystalline grain engineered CsPbIBr2 films for indoor photovoltaicsen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Centre for Energy Ethicsen
dc.identifier.doihttps://doi.org/10.1016/j.apsusc.2022.152865
dc.description.statusPeer revieweden
dc.date.embargoedUntil2023-02-25


This item appears in the following Collection(s)

Show simple item record