Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorMaughan, P. A.
dc.contributor.authorNaden, A. B.
dc.contributor.authorIrvine, J. T. S.
dc.contributor.authorArmstrong, A. R.
dc.date.accessioned2023-02-07T09:30:06Z
dc.date.available2023-02-07T09:30:06Z
dc.date.issued2023-02-02
dc.identifier283276002
dc.identifierb0bbef9e-0c6a-403d-85f0-9aad306e8024
dc.identifier85147329619
dc.identifier000922628700001
dc.identifier.citationMaughan , P A , Naden , A B , Irvine , J T S & Armstrong , A R 2023 , ' Manipulating O3/P2 phase ratio in bi-phasic sodium layered oxides via ionic radius control ' , Communications Materials , vol. 4 , no. 1 , 6 . https://doi.org/10.1038/s43246-023-00337-8en
dc.identifier.issn2662-4443
dc.identifier.otherRIS: urn:3892DA6929683611AA23BC238A477354
dc.identifier.otherRIS: Maughan2023
dc.identifier.otherORCID: /0000-0002-8394-3359/work/128567857
dc.identifier.otherORCID: /0000-0003-2876-6991/work/128568176
dc.identifier.otherORCID: /0000-0003-1937-0936/work/128568314
dc.identifier.urihttps://hdl.handle.net/10023/26912
dc.descriptionFunding: This work was supported by the Faraday Institution (Grant number FIRG018). The authors would like to thank Dr. David Rochester at Lancaster University for conducting the ICP-OES experiments. A.B.N. would like to acknowledge funding by the Engineering and Physical Sciences Research Council under grant numbers EP/L017008/1, EP/R023751/1, and EP/T019298/1 for the electron microscopy analysis.en
dc.description.abstractBi-phasic O3/P2 sodium layered oxides have emerged as leading candidates for the commercialisation of next-generation sodium-ion batteries. However, beyond simply altering the sodium content, rational control of the O3/P2 ratio in these materials has proven particularly challenging despite being crucial for the realization of high-performance electrode materials. Here, using abundant elements, we manipulate the O3/P2 ratio using the average ionic radius of the transition metal layer and different synthesis conditions. These methods allow deterministic control over the O3/P2 ratio, even for constant Na contents. In addition, tuning the O3/P2 ratio yields high-performing materials with different performance characteristics, with a P2-rich material achieving high rate capabilities and excellent cycling stability (92% retention, 50 cycles), while an O3-rich material displayed an energy density up to 430 Wh kg−1, (85%, 50 cycles). These insights will help guide the rational design of future high-performance materials for sodium-ion batteries.
dc.format.extent7
dc.format.extent1182558
dc.language.isoeng
dc.relation.ispartofCommunications Materialsen
dc.subjectQD Chemistryen
dc.subjectNDASen
dc.subjectMCCen
dc.subject.lccQDen
dc.titleManipulating O3/P2 phase ratio in bi-phasic sodium layered oxides via ionic radius controlen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorThe Faraday Institutionen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. Institute of Behavioural and Neural Sciencesen
dc.contributor.institutionUniversity of St Andrews. Centre for Energy Ethicsen
dc.contributor.institutionUniversity of St Andrews. Centre for Designer Quantum Materialsen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.identifier.doihttps://doi.org/10.1038/s43246-023-00337-8
dc.description.statusPeer revieweden
dc.identifier.grantnumberep/l017008/1en
dc.identifier.grantnumberep/l017008/1en
dc.identifier.grantnumberEP/T019298/1en
dc.identifier.grantnumberEP/T005602/1en


This item appears in the following Collection(s)

Show simple item record