Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorSamra, Dominic
dc.contributor.authorHelling, Christiane
dc.contributor.authorChubb, Katy
dc.contributor.authorMin, Michiel
dc.contributor.authorCarone, Ludmila
dc.contributor.authorSchneider, Aaron
dc.date.accessioned2023-01-30T12:35:39Z
dc.date.available2023-01-30T12:35:39Z
dc.date.issued2023-01-25
dc.identifier.citationSamra , D , Helling , C , Chubb , K , Min , M , Carone , L & Schneider , A 2023 , ' Clouds form on the hot Saturn JWST ERO target WASP-96b ' , Astronomy & Astrophysics , vol. 669 , A142 . https://doi.org/10.1051/0004-6361/202244939en
dc.identifier.issn0004-6361
dc.identifier.otherPURE: 283016010
dc.identifier.otherPURE UUID: 01ab981a-1b8b-4001-950d-278df68e68ea
dc.identifier.otherArXiv: http://arxiv.org/abs/2211.00633v1
dc.identifier.otherORCID: /0000-0002-4552-4559/work/128097722
dc.identifier.otherScopus: 85147090635
dc.identifier.urihttps://hdl.handle.net/10023/26855
dc.descriptionFunding: Ch.H., M.M., L.C., and A.D.S. acknowledge funding from the European Union H2020-MSCA-ITN-2019 under Grant Agreement no. 860470 (CHAMELEON). K.L.C. acknowledges funding from STFC, under project number ST/V000861/1. D.S. acknowledges financial support from the Austrian Academy of Science.en
dc.description.abstractContext. WASP-96b is a hot Saturn exoplanet, with an equilibrium temperature of ≈ 1300 K. This is well within the regime of thermodynamically expected extensive cloud formation. Prior observations with Hubble/WFC3, Spitzer/IRAC, and VLT/FORS2 have been combined into a single spectrum for which retrievals suggest a cold but cloud-free atmosphere. Recently, the planet was observed with the James Webb Space Telescope (JWST) as part of the Early Release Observations (ERO). Aims. The formation of clouds in the atmosphere of exoplanet WASP-96b is explored. Methods. One-dimensional profiles were extracted from the 3D GCM expeRT/MITgcm results and used as input for a kinetic, non-equilibrium model to study the formation of mineral cloud particles of mixed composition. The ARCiS retrieval framework was applied to the pre-JWST WASP-96b transit spectrum to investigate the apparent contradiction between cloudy models and assumed cloud-free transit spectrum. Results. Clouds are predicted to be ubiquitous throughout the atmosphere of WASP-96b. Silicate materials contribute between 40% and 90% cloud particle volume, which means that metal oxides also contribute with up to 40% cloud particle volume in the low-pressure regimes that affect spectra. We explore how these cloudy models match currently available transit spectra. Reduced vertical mixing acts to settle clouds to deeper in the atmosphere, and an increased cloud particle porosity reduces the opacity of clouds in the near-IR and optical region. These two effects allow for clearer molecular features to be observed while still allowing clouds to be in the atmosphere. Conclusions. The atmosphere of WASP-96b is unlikely to be cloud free. Retrievals of HST, Spitzer, and VLT spectra also show that multiple cloudy solutions reproduce the data. JWST observations will be affected by clouds, where the cloud top pressure varies by an order of magnitude within even the NIRISS wavelength range. The long-wavelength end of NIRSpec and the short-wavelength end of MIRI may probe atmospheric asymmetries between the limbs of the terminator on WASP-96b.
dc.format.extent17
dc.language.isoeng
dc.relation.ispartofAstronomy & Astrophysicsen
dc.rightsCopyright © The Authors 2023. Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en
dc.subjectPlanets and satellites: individual: WASP-96ben
dc.subjectPlanets and satellites: gaseous planetsen
dc.subjectPlanets and satellites: fundamental parametersen
dc.subjectPlanets and satellites: atmospheresen
dc.subjectQB Astronomyen
dc.subjectQC Physicsen
dc.subject3rd-DASen
dc.subjectMCCen
dc.subject.lccQBen
dc.subject.lccQCen
dc.titleClouds form on the hot Saturn JWST ERO target WASP-96ben
dc.typeJournal articleen
dc.contributor.sponsorEuropean Commissionen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.identifier.doihttps://doi.org/10.1051/0004-6361/202244939
dc.description.statusPeer revieweden
dc.identifier.urlhttp://arxiv.org/abs/2211.00633en
dc.identifier.grantnumber860470en


This item appears in the following Collection(s)

Show simple item record