St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

An electric molecular motor

Thumbnail
View/Open
Zhang_2023_Nature_Electric_molecular_motor_CC.pdf (7.571Mb)
Date
12/01/2023
Author
Zhang, Long
Qiu, Yunyan
Liu, Wei-Guang
Chen, Hongliang
Shen, Dengke
Song, Bo
Cai, Kang
Wu, Huang
Jiao, Yang
Feng, Yuanning
Seale, James S W
Pezzato, Cristian
Tian, Jia
Tan, Yu
Chen, Xiao-Yang
Guo, Qing-Hui
Stern, Charlotte L
Philp, Douglas
Astumian, R Dean
Goddard, William A
Stoddart, J Fraser
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Macroscopic electric motors continue to have a large impact on almost every aspect of modern society. Consequently, the effort towards developing molecular motors that can be driven by electricity could not be more timely. Here we describe an electric molecular motor based on a [3]catenane , in which two cyclobis(paraquat-p-phenylene) (CBPQT4+) rings are powered by electricity in solution to circumrotate unidirectionally around a 50-membered loop. The constitution of the loop ensures that both rings undergo highly (85%) unidirectional movement under the guidance of a flashing energy ratchet , whereas the interactions between the two rings give rise to a two-dimensional potential energy surface (PES) similar to that shown by F0F1ATP synthase . The unidirectionality is powered by an oscillating voltage or external modulation of the redox potential . Initially, we focused our attention on the homologous [2]catenane, only to find that the kinetic asymmetry was insufficient to support unidirectional movement of the sole ring. Accordingly, we incorporated a second CBPQT4+ ring to provide further symmetry breaking by interactions between the two mobile rings. This demonstration of electrically driven continual circumrotatory motion of two rings around a loop in a [3]catenane is free from the production of waste products and represents an important step towards surface-bound electric molecular motors.
Citation
Zhang , L , Qiu , Y , Liu , W-G , Chen , H , Shen , D , Song , B , Cai , K , Wu , H , Jiao , Y , Feng , Y , Seale , J S W , Pezzato , C , Tian , J , Tan , Y , Chen , X-Y , Guo , Q-H , Stern , C L , Philp , D , Astumian , R D , Goddard , W A & Stoddart , J F 2023 , ' An electric molecular motor ' , Nature , vol. 613 , no. 7943 , pp. 280-286 . https://doi.org/10.1038/s41586-022-05421-6
Publication
Nature
Status
Peer reviewed
DOI
https://doi.org/10.1038/s41586-022-05421-6
ISSN
0028-0836
Type
Journal article
Rights
© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Description
The computational investigations at California Institute of Technology were supported by National Science Foundation grant no. CBET-2005250 (W.-G.L. and W.A.G.).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/26828

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter