St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hierarchy of Lifshitz transitions in the surface electronic structure of Sr2RuO4 under uniaxial compression

Thumbnail
View/Open
Sr214_surface_strain.pdf (6.816Mb)
Date
11/01/2023
Author
Abarca Morales, Edgar
Siemann, Gesa-Roxanne
Zivanovic, Andela
Murgatroyd, Philip
Markovic, Igor
Edwards, Brendan
Hooley, Chris
Sokolov, D
Kikugawa, N
Cacho, C
Watson, M
Kim, T
Hicks, Clifford William
Mackenzie, Andrew
King, Phil
Funder
EPSRC
EPSRC
European Research Council
The Leverhulme Trust
Grant ID
EP/T02108X/1
EP/R031924/1
714193
2016-006
Keywords
QC Physics
DAS
MCP
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
We report the evolution of the electronic structure at the surface of the layered perovskiteSr2RuO4 under large in-plane uniaxial compression, leading to anisotropic B1g strains of εxx − εyy = −0.9 ± 0.1%. From angle-resolved photoemission, we show how this drives a sequence of Lifshitz transitions, reshaping the low-energy electronic structure and the rich spectrum of van Hove singularities that the surface layer of Sr2RuO4 hosts. From comparison to tight-binding modelling, we find that the strain is accommodated predominantly by bond-length changes rather than modifications of octahedral tilt and rotation angles. Our study sheds new light on the nature of structural distortions at oxide surfaces, and how targeted control of these can be used to tune density of states singularities to the Fermi level, in turn paving the way to the possible realisation of rich collective states at the Sr2RuO4 surface.
Citation
Abarca Morales , E , Siemann , G-R , Zivanovic , A , Murgatroyd , P , Markovic , I , Edwards , B , Hooley , C , Sokolov , D , Kikugawa , N , Cacho , C , Watson , M , Kim , T , Hicks , C W , Mackenzie , A & King , P 2023 , ' Hierarchy of Lifshitz transitions in the surface electronic structure of Sr 2 RuO 4 under uniaxial compression ' , Physical Review Letters .
Publication
Physical Review Letters
Status
Peer reviewed
ISSN
0031-9007
Type
Journal article
Rights
Copyright © 2023 American Physical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://journals.aps.org/prl/accepted/1d07aYd1Hc213a95a00261c77f48ade3161f83608.
Description
Funding: We gratefully acknowledge support from the Engineering and Physical Sciences Research Council (Grant Nos. EP/T02108X/1 and EP/R031924/1), the European Research Council (through the QUESTDO project, 714193), and the Leverhulme Trust (Grant No. RL-2016-006). E.A.M., A.Z., and I.M. gratefully acknowledge studentship support from the International Max-Planck Research School for Chemistry and Physics of Quantum Materials. N.K. is supported by a KAKENHI Grants-in-Aids for Scientific Research (Grant Nos.18K04715, and 21H01033), and Core-to-Core Program (No. JPJSCCA20170002) from the Japan Society for the Promotion of Science (JSPS) and by a JST-Mirai Program (Grant No. JPMJMI18A3). APM and CWH acknowledge support from the Deutsche Forschungsgemeinschaft - TRR 435 288 - 422213477 (project A10). We thank Diamond Light Source for access to Beamline I05 (Proposals SI27471 and SI28412), which contributed to the results presented here.
Collections
  • University of St Andrews Research
URL
https://journals.aps.org/prl/accepted/1d07aYd1Hc213a95a00261c77f48ade3161f83608
URI
http://hdl.handle.net/10023/26774

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter