St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

POT-3 preferentially binds the terminal DNA-repeat on the telomeric G-overhang

Thumbnail
View/Open
Yu_2022_POT_3_preferentially_binds_NAR_gkac1203_CCBY.pdf (1.685Mb)
Date
25/01/2023
Author
Yu, Xupeng
Gray, Sean
Ferreira, Helder
Keywords
QD Chemistry
QH426 Genetics
NDAS
MCC
Metadata
Show full item record
Abstract
Eukaryotic chromosomes typically end in 3′ telomeric overhangs. The safeguarding of telomeric single-stranded DNA overhangs is carried out by factors related to the protection of telomeres 1 (POT1) protein in humans. Of the three POT1-like proteins in Caenorhabditis elegans, POT-3 was the only member thought to not play a role at telomeres. Here, we provide evidence that POT-3 is a bona fide telomere-binding protein. Using a new loss-of-function mutant, we show that the absence of POT-3 causes telomere lengthening and increased levels of telomeric C-circles. We find that POT-3 directly binds the telomeric G-strand in vitro and map its minimal DNA binding site to the six-nucleotide motif, GCTTAG. We further show that the closely related POT-2 protein binds the same motif, but that POT-3 shows higher sequence selectivity. Crucially, in contrast to POT-2, POT-3 prefers binding sites immediately adjacent to the 3′ end of DNA. These differences are significant as genetic analyses reveal that pot-2 and pot-3 do not function redundantly with each other in vivo. Our work highlights the rapid evolution and specialisation of telomere binding proteins and places POT-3 in a unique position to influence activities that control telomere length.
Citation
Yu , X , Gray , S & Ferreira , H 2023 , ' POT-3 preferentially binds the terminal DNA-repeat on the telomeric G-overhang ' , Nucleic Acids Research , vol. 51 , no. 2 , pp. 610–618 . https://doi.org/10.1093/nar/gkac1203
Publication
Nucleic Acids Research
Status
Peer reviewed
DOI
https://doi.org/10.1093/nar/gkac1203
ISSN
0305-1048
Type
Journal article
Rights
Copyright © The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Description
Funding: The China Scholarship Scheme supported Xupeng Yu [201904910787]; some strains were provided by the CGC, which is funded by NIH Office of Research Infrastructure Programs [P40 OD010440]. Funding for open access charge: Scottish Higher Education Digital Library Consortium (SHEDL) Read and Publish agreement.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/26770

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter