Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorVoerman, Sofie E.
dc.contributor.authorRuseckas, Arvydas
dc.contributor.authorTurnbull, Graham A.
dc.contributor.authorSamuel, Ifor D. W.
dc.contributor.authorBurdett, Heidi L.
dc.date.accessioned2023-01-06T10:30:15Z
dc.date.available2023-01-06T10:30:15Z
dc.date.issued2022-12-27
dc.identifier282828046
dc.identifiercda11d17-c5cb-47d4-85a3-57eb033231c3
dc.identifier85144811279
dc.identifier000905168100007
dc.identifier.citationVoerman , S E , Ruseckas , A , Turnbull , G A , Samuel , I D W & Burdett , H L 2022 , ' Red algae acclimate to low light by modifying phycobilisome composition to maintain efficient light harvesting ' , BMC Biology , vol. 20 , 291 . https://doi.org/10.1186/s12915-022-01480-3en
dc.identifier.issn1741-7007
dc.identifier.otherRIS: urn:85EE166F7375179345B3120C41E494BE
dc.identifier.otherRIS: Voerman2022
dc.identifier.otherORCID: /0000-0001-9114-3522/work/126031807
dc.identifier.urihttps://hdl.handle.net/10023/26696
dc.descriptionFunding: Funding was provided by a Engineering and Physical Sciences Research Council EP/L017008/1 to GT & IS and a Leverhulme Trust Research Project Grant (RPG-2018–113) to HB, GT and IS.en
dc.description.abstractBackground Despite a global prevalence of photosynthetic organisms in the ocean’s mesophotic zone (30–200+ m depth), the mechanisms that enable photosynthesis to proceed in this low light environment are poorly defined. Red coralline algae are the deepest known marine benthic macroalgae — here we investigated the light harvesting mechanism and mesophotic acclimatory response of the red coralline alga Lithothamnion glaciale. Results Following initial absorption by phycourobilin and phycoerythrobilin in phycoerythrin, energy was transferred from the phycobilisome to photosystems I and II within 120 ps. This enabled delivery of 94% of excitations to reaction centres. Low light intensity, and to a lesser extent a mesophotic spectrum, caused significant acclimatory change in chromophores and biliproteins, including a 10% increase in phycoerythrin light harvesting capacity and a 20% reduction in chlorophyll-a concentration and photon requirements for photosystems I and II. The rate of energy transfer remained consistent across experimental treatments, indicating an acclimatory response that maintains energy transfer. Conclusions Our results demonstrate that responsive light harvesting by phycobilisomes and photosystem functional acclimation are key to red algal success in the mesophotic zone.
dc.format.extent16
dc.format.extent3897898
dc.language.isoeng
dc.relation.ispartofBMC Biologyen
dc.subjectCoralline algaeen
dc.subjectPhotosynthesisen
dc.subjectPhycobilisomeen
dc.subjectMesophoticen
dc.subjectFluorescenceen
dc.subjectPhotosystemen
dc.subjectPhoto-acclimationen
dc.subjectChromo-acclimationen
dc.subjectMaerlen
dc.subjectRhodolithen
dc.subjectDASen
dc.subjectSDG 14 - Life Below Wateren
dc.titleRed algae acclimate to low light by modifying phycobilisome composition to maintain efficient light harvestingen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorThe Leverhulme Trusten
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Centre for Energy Ethicsen
dc.contributor.institutionUniversity of St Andrews. Sir James Mackenzie Institute for Early Diagnosisen
dc.contributor.institutionUniversity of St Andrews. Centre for Biophotonicsen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doi10.1186/s12915-022-01480-3
dc.description.statusPeer revieweden
dc.identifier.grantnumberep/l017008/1en
dc.identifier.grantnumberRPG-2018-113en


This item appears in the following Collection(s)

Show simple item record