The lattice of one-sided congruences on an inverse semigroup
Date
13/12/2022Author
Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We build on the description of left congruences on an inverse semigroup in terms of the kernel and trace due to Petrich and Rankin. The notion of an inverse kernel for a left congruence is developed. Various properties of the trace and inverse kernel are discussed, in particular that the inverse kernel is a full inverse subsemigroup and that both the trace and inverse kernel maps are onto ∩-homomorphisms. It is shown that a left congruence is determined by its trace and inverse kernel, and the lattice of left congruences is identified as a subset of the direct product of the lattice of congruences on the idempotents and the lattice of full inverse subsemigroups. We demonstrate that every finitely generated left congruence is the join of a finitely generated trace minimal left congruence and a finitely generated idempotent separating left congruence. Characterisations are given of inverse semigroups that are left Noetherian, or are such that Rees left congruences are finitely generated.
Citation
Brookes , M 2022 , ' The lattice of one-sided congruences on an inverse semigroup ' , Periodica Mathematica Hungarica , vol. Early View . https://doi.org/10.1007/s10998-022-00497-z
Publication
Periodica Mathematica Hungarica
Status
Peer reviewed
ISSN
1588-2829Type
Journal article
Rights
Copyright © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Description
Funding: This project forms part of the work toward my PhD at the University of York, supported by EPSRC grant EP/N509802/1.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.