Files in this item
A nonlinear projection theorem for Assouad dimension and applications
Item metadata
dc.contributor.author | Fraser, Jonathan | |
dc.date.accessioned | 2022-12-09T12:30:02Z | |
dc.date.available | 2022-12-09T12:30:02Z | |
dc.date.issued | 2022-12-08 | |
dc.identifier.citation | Fraser , J 2022 , ' A nonlinear projection theorem for Assouad dimension and applications ' , Journal of the London Mathematical Society , vol. Early View . https://doi.org/10.1112/jlms.12697 | en |
dc.identifier.issn | 0024-6107 | |
dc.identifier.other | PURE: 281405648 | |
dc.identifier.other | PURE UUID: 20f6b391-469a-47b0-b90e-0f6517d7c7d6 | |
dc.identifier.other | ORCID: /0000-0002-8066-9120/work/124490047 | |
dc.identifier.other | Scopus: 85144038187 | |
dc.identifier.other | WOS: 000894167900001 | |
dc.identifier.uri | http://hdl.handle.net/10023/26565 | |
dc.description | Funding: The author was supported by an EPSRC Standard Grant (EP/R015104/1) and a Leverhulme Trust Research Project Grant (RPG-2019-034). | en |
dc.description.abstract | We prove a general nonlinear projection theorem for Assouad dimension. This theorem has several applications including to distance sets, radial projections, and sum-product phenomena. In the setting of distance sets we are able to completely resolve the planar version of Falconer’s distance set problem for Assouad dimension, both dealing with the awkward ‘critical case’ and providing sharp estimates for sets with Assouad dimension less than 1. In the higher dimensional setting we connect the problem to the dimension of the set of exceptions in a related (orthogonal) projection theorem. We also obtain results on pinned distance sets and our results still hold when distances are taken with respect to a sufficiently curved norm. As another application we prove a radial projection theorem for Assouad dimension with sharp estimates on the Hausdorff dimension of the exceptional set. | |
dc.format.extent | 21 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of the London Mathematical Society | en |
dc.rights | Copyright © 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. | en |
dc.subject | Assouad dimension | en |
dc.subject | Nonlinear projections | en |
dc.subject | Distance sets | en |
dc.subject | Radial projections | en |
dc.subject | Exceptional set | en |
dc.subject | Hausdorff dimension | en |
dc.subject | Sum-product theorem | en |
dc.subject | QA Mathematics | en |
dc.subject | T-NDAS | en |
dc.subject | MCP | en |
dc.subject.lcc | QA | en |
dc.title | A nonlinear projection theorem for Assouad dimension and applications | en |
dc.type | Journal article | en |
dc.contributor.sponsor | EPSRC | en |
dc.contributor.sponsor | The Leverhulme Trust | en |
dc.description.version | Publisher PDF | en |
dc.contributor.institution | University of St Andrews. Pure Mathematics | en |
dc.contributor.institution | University of St Andrews. Centre for Interdisciplinary Research in Computational Algebra | en |
dc.identifier.doi | https://doi.org/10.1112/jlms.12697 | |
dc.description.status | Peer reviewed | en |
dc.identifier.grantnumber | EP/R015104/1 | en |
dc.identifier.grantnumber | RPG-2019-034 | en |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.