Creating and controlling Dirac fermions, Weyl fermions, and nodal lines in the magnetic antiperovskite Eu3PbO
Date
28/11/2022Author
Grant ID
EP/P024564/1
EP/T011130/1
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The band topology of magnetic semimetals is of interest both from the fundamental science point of view and with respect to potential spintronics and memory applications. Unfortunately, only a handful of suitable topological semimetals with magnetic order have been discovered so far. One such family that hosts these characteristics is the antiperovskites, A3BO, a family of 3D Dirac semimetals. The A=Eu2+ compounds magnetically order with multiple phases as a function of applied magnetic field. Here, by combining band structure calculations with neutron diffraction and magnetic measurements, we establish the antiperovskite Eu3PbO as a new topological magnetic semimetal. This topological material exhibits a multitude of different topological phases with ordered Eu moments which can be easily controlled by an external magnetic field. The topological phase diagram of Eu3PbO includes an antiferromagnetic Dirac phase, as well as ferro- and ferrimagnetic phases with both Weyl points and nodal lines. For each of these phases, we determine the bulk band dispersions, the surface states, and the topological invariants by means of ab initio and tight-binding calculations. Our discovery of these topological phases introduces Eu3PbO as a new platform to study and manipulate the interplay of band topology, magnetism, and transport.
Citation
Hirschmann , M M , Gibbs , A , Orlandi , F , Khalyavin , D , Manuel , P , Abdolazimi , V , Yaresko , A , Nuss , J , Takagi , H , Schnyder , A & Rost , A W 2022 , ' Creating and controlling Dirac fermions, Weyl fermions, and nodal lines in the magnetic antiperovskite Eu 3 PbO ' , Physical Review Materials , vol. 6 , no. 11 , 114202 . https://doi.org/10.1103/PhysRevMaterials.6.114202
Publication
Physical Review Materials
Status
Peer reviewed
ISSN
2475-9953Type
Journal article
Rights
Copyright © 2022 The Author(s). Open Access, published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
Description
Funding: A. W. R. and A. S. G. were supported by the Engineering and Physical Sciences Research Council (grant numbers EP/P024564/1 and EP/T011130/1 respectively). This work has been supported in part by the Alexander von Humboldt Foundation.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.