St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Highly efficient green and red narrowband emissive organic light-emitting diodes employing multi-resonant thermally activated delayed fluorescence emitters

Thumbnail
View/Open
Wu_2022_ACIE_Greenandred_CC.pdf (4.430Mb)
Date
23/12/2022
Author
Wu, Sen
Gupta, Abhishek Kumar
Yoshida, Kou
Gong, Junyi
Hall, David
Cordes, David B.
Slawin, Alexandra M. Z.
Samuel, Ifor D. W.
Zysman-Colman, Eli
Funder
The Royal Society
EPSRC
EPSRC
The Royal Society
The Leverhulme Trust
Grant ID
NF171163
ep/l017008/1
EP/P010482/1
SRF\R1\201089
RPG-2016-047
Keywords
Multi-resonant thermally activated delayed fluorescence
Organic light-emitting diodes
Horizontal orientation
Hyperfluorescence
Thermally activated delayed fluorescence (TADF)
QD Chemistry
DAS
MCC
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Herein, we demonstrate how judicious selection of donor decorating a central multi-resonant thermally activated delayed fluorescence (MR-TADF) core based on DiKTa can lead to very high-performance OLEDs. Decorating the DiKTa core with triphenylamine (TPA) and diphenylamine (DPA), 3TPA-DiKTa and 3DPA-DiKTa exhibit bright, narrowband green and red emission in doped films, respectively. The OLEDs based on these emitters showed record-high performance with maximum external quantum efficiencies (EQEmax) for this family of emitters, with a EQEmax of 30.8% for 3TPA-DiKTa at λEL of 551 nm and 16.7% for 3DPA-DiKTa at λEL of 613 nm. The efficiency roll-off in the OLEDs was improved significantly by using 4CzIPN as an assistant dopant in hyperfluorescence (HF) devices. The outstanding device performance has been attributed to preferential horizontal orientation of the transition dipole moments of 3TPA-DiKTa and 3DPA-DiKTa.
Citation
Wu , S , Gupta , A K , Yoshida , K , Gong , J , Hall , D , Cordes , D B , Slawin , A M Z , Samuel , I D W & Zysman-Colman , E 2022 , ' Highly efficient green and red narrowband emissive organic light-emitting diodes employing multi-resonant thermally activated delayed fluorescence emitters ' , Angewandte Chemie International Edition , vol. 61 , no. 52 , e202213697 . https://doi.org/10.1002/anie.202213697
Publication
Angewandte Chemie International Edition
Status
Peer reviewed
DOI
https://doi.org/10.1002/anie.202213697
ISSN
1433-7851
Type
Journal article
Rights
Copyright © 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Description
Funding: S. W. thanks the China Scholarship Council (201906250199). A. K. G. is grateful to the Royal Society for Newton International Fellowship NF171163. EZ-C and IDWS acknowledge support from EPSRC (EP/L017008, EP/P010482/1). We are also grateful for financial support from the University of St Andrews Restarting Research Funding Scheme (SARRF) which is funded through the Scottish Funding Council grant reference SFC/AN/08/020. EZ-C is a Royal Society Leverhulme Trust Senior Research fellow (SRF\R1\201089). We would also like to thank the Leverhulme Trust (RPG-2016-047) for financial support.
Collections
  • University of St Andrews Research
URL
https://doi.org/10.26434/chemrxiv-2022-1j3np-v2
URI
http://hdl.handle.net/10023/26482

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter