Files in this item
Sensorimotor interfaces : towards enactivity in HCI
Item metadata
dc.contributor.advisor | Quigley, Aaron John | |
dc.contributor.advisor | Hinrichs, Uta | |
dc.contributor.advisor | Clarke, Loraine | |
dc.contributor.author | Carson, Iain | |
dc.coverage.spatial | x, 208 p. | en_US |
dc.date.accessioned | 2022-11-21T10:06:24Z | |
dc.date.available | 2022-11-21T10:06:24Z | |
dc.date.issued | 2022-06-15 | |
dc.identifier.uri | http://hdl.handle.net/10023/26445 | |
dc.description.abstract | This thesis explores the application of enactive techniques to human computer interaction, focusing on how devices following ‘sensorimotor’ principles can be blended with interface goals to lead to new perceptual experiences. Building sensorimotor interfaces is an exciting, emerging field of research facing challenges surrounding application, design, training and uptake. To tackle these challenges, this thesis cuts a line of investigation from a review of enactivity in the related field of sensory substitution and augmentation devices, to a schematic taxonomy, model and design guide of ‘the sensorimotor interface’; developed from a theoretically-grounded, enactive approach to cognition. Device, interaction and training guidelines are drawn from this model, formalising the application of the enactive approach to HCI. A readily-available consumer device is then characterised and calibrated in preparation for testing the model validity and associated insights. The process highlights the effects of accessible, easily-implemented calibrations, and the importance of mixed-method approaches in assessing sensorimotor interface potential. The calibrated device is utilised to conduct a detailed, methodological investigation into how concurrently available sensory information affects and contributes to uptake of novel sensorimotor skills. Robust statistical modelling concludes that sensory concurrency has a profound effect on the comprehension and integration of enactive haptic signals, and that efforts to carefully control the nature and degree of sensory concurrency improve user comprehension and enjoyability when engaging with novel sensorimotor tasks, while reducing confusion and stress. The work is concluded by speculation on how the presented derivations, methods and observations can be used to directly influence future sensorimotor interface design in HCI. This thesis therefore constitutes a primer to the principles and history of sensory substitution and augmentation, details the requirements and limitations of the enactive approach in academia and industry, and brings enactivity forward as an accessible, viable and exciting methodology in interaction design. | en_US |
dc.language.iso | en | en_US |
dc.publisher | University of St Andrews | |
dc.relation | Carson , I , Quigley , A , Clarke , L & Hinrichs , U 2021 , ' Investigating the effect of sensory concurrency on learning haptic spatiotemporal signals ' , Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies , vol. 5 , no. 1 , 6 , pp. 1-30 . https://doi.org/10.1145/3448102 | en |
dc.relation.uri | http://hdl.handle.net/10023/21746 | |
dc.subject.lcc | QA76.9H85C28 | |
dc.subject.lcsh | Human-computer interaction | en |
dc.title | Sensorimotor interfaces : towards enactivity in HCI | en_US |
dc.type | Thesis | en_US |
dc.contributor.sponsor | University of St Andrews. School of Computer Science | en_US |
dc.type.qualificationlevel | Doctoral | en_US |
dc.type.qualificationname | PhD Doctor of Philosophy | en_US |
dc.publisher.institution | The University of St Andrews | en_US |
dc.identifier.doi | https://doi.org/10.17630/sta/225 |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.