Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorRuseckas, Arvydas
dc.contributor.authorSamuel, Ifor David William
dc.date.accessioned2022-11-17T00:39:00Z
dc.date.available2022-11-17T00:39:00Z
dc.date.issued2021-11-17
dc.identifier276679447
dc.identifier65dd7835-4296-47ab-be8d-31c2134dc543
dc.identifier000723010700002
dc.identifier85124503042
dc.identifier.citationRuseckas , A & Samuel , I D W 2021 , ' Engineering highways for excitons ' , Joule , vol. 5 , no. 11 , pp. 2762-2764 . https://doi.org/10.1016/j.joule.2021.10.015en
dc.identifier.issn2542-4351
dc.identifier.otherORCID: /0000-0001-9114-3522/work/103865422
dc.identifier.urihttps://hdl.handle.net/10023/26419
dc.description.abstractThe distance that excitons can travel is a key parameter for organic photovoltaic materials. In the August issue of Science Advances, Sneyd and colleagues report a breakthrough in increasing exciton diffusion length to 300 nm by using highly ordered nanofibers. This approach can enable simpler and more stable solar cells.
dc.format.extent320021
dc.language.isoeng
dc.relation.ispartofJouleen
dc.subjectQC Physicsen
dc.subjectTK Electrical engineering. Electronics Nuclear engineeringen
dc.subjectT-NDASen
dc.subjectSDG 7 - Affordable and Clean Energyen
dc.subject.lccQCen
dc.subject.lccTKen
dc.titleEngineering highways for excitonsen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Centre for Biophotonicsen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doi10.1016/j.joule.2021.10.015
dc.description.statusPeer revieweden
dc.date.embargoedUntil2022-11-17


This item appears in the following Collection(s)

Show simple item record