Show simple item record

Files in this item


Item metadata

dc.contributor.authorByrne, Michael P.
dc.identifier.citationByrne , M P 2021 , ' Amplified warming of extreme temperatures over tropical land ' , Nature Geoscience , vol. 14 , pp. 837-841 .
dc.identifier.otherRIS: urn:EBD6D11BDCF191AB88B80193B39DC6B4
dc.identifier.otherRIS: Byrne2021
dc.identifier.otherORCID: /0000-0001-9019-3915/work/101958988
dc.descriptionSupport from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 794063.en
dc.description.abstractExtreme temperatures have warmed substantially over recent decades and are projected to continue warming in response to future climate change. Warming of extreme temperatures is amplified over land, with severe implications for human health, wildfire risk and food production. Using simulations from 18 climate models, I show that hot days over tropical land warm substantially more than the average day. For example, warming of the hottest 5% of land days is a factor of 1.21 ± 0.07 larger than the time-mean warming averaged across models. The climate change response of extreme temperatures over tropical land is interpreted using a theory based on atmospheric dynamics. According to the theory, warming is amplified for hot land days because those days are dry, which is termed the ‘drier get hotter’ mechanism. Changes in near-surface relative humidity further increase tropical land warming, with decreases in land relative humidity being particularly important. The theory advances physical understanding of the tropical climate and highlights land surface dryness as a key factor determining how extreme temperatures respond to climate change.
dc.relation.ispartofNature Geoscienceen
dc.subjectClimate sciencesen
dc.subjectProjection and predictionen
dc.subjectAtmospheric dynamicsen
dc.subjectClimate changeen
dc.subjectGE Environmental Sciencesen
dc.subjectSDG 2 - Zero Hungeren
dc.subjectSDG 3 - Good Health and Well-beingen
dc.subjectSDG 13 - Climate Actionen
dc.titleAmplified warming of extreme temperatures over tropical landen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Earth & Environmental Sciencesen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record