St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Temperature-associated selection linked to putative chromosomal inversions in king scallop (Pecten maximus)

Thumbnail
View/Open
Hollenbeck_2022_RSPB_Temperature_associated_CC.pdf (1.155Mb)
Date
12/10/2022
Author
Hollenbeck, Christopher M.
Portnoy, David S.
Garcia de la serrana, Daniel
Magnesen, Thorolf
Matejusova, Iveta
Johnston, Ian A.
Funder
European Commission
Grant ID
654008
Keywords
Evolution
Local adaptation
Chromosomal inversion
Population genomics
Molluscs
QH426 Genetics
DAS
NIS
MCC
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The genomic landscape of divergence—the distribution of differences among populations or species across the genome—is increasingly characterized to understand the role that microevolutionary forces such as natural selection and recombination play in causing and maintaining genetic divergence. This line of inquiry has also revealed chromosome structure variation to be an important factor shaping the landscape of adaptive genetic variation. Owing to a high prevalence of chromosome structure variation and the strong pressure for local adaptation necessitated by their sessile nature, bivalve molluscs are an ideal taxon for exploring the relationship between chromosome structure variation and local adaptation. Here, we report a population genomic survey of king scallop (Pecten maximus) across its natural range in the northeastern Atlantic Ocean, using a recent chromosome-level genome assembly. We report the presence of at least three large (12–22 Mb), putative chromosomal inversions associated with sea surface temperature and whose frequencies are in contrast to neutral population structure. These results highlight a potentially large role for recombination-suppressing chromosomal inversions in local adaptation and suggest a hypothesis to explain the maintenance of differences in reproductive timing found at relatively small spatial scales across king scallop populations.
Citation
Hollenbeck , C M , Portnoy , D S , Garcia de la serrana , D , Magnesen , T , Matejusova , I & Johnston , I A 2022 , ' Temperature-associated selection linked to putative chromosomal inversions in king scallop ( Pecten maximus ) ' , Proceedings of the Royal Society of London Series B: Biological Sciences , vol. 289 , no. 1984 , 20221573 . https://doi.org/10.1098/rspb.2022.1573
Publication
Proceedings of the Royal Society of London Series B: Biological Sciences
Status
Peer reviewed
DOI
https://doi.org/10.1098/rspb.2022.1573
ISSN
0962-8452
Type
Journal article
Rights
Copyright © 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
Description
Funding: This study was initiated as part of the European Marine Biological Research Infrastructure Cluster (EMBRIC) project funded by the European Union's Horizon 2020 research and innovation programme under grant agreement no. 654008.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/26386

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter