St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

ContrasGAN : unsupervised domain adaptation in Human Activity Recognition via adversarial and contrastive learning

Thumbnail
View/Open
Sanabria_2021_ContrasGAN_PMC_AAM.pdf (5.085Mb)
Date
06/11/2021
Author
Rosales Sanabria, Andrea
Zambonelli, Franco
Dobson, Simon Andrew
Ye, Juan
Keywords
Human activity recognition
Unsupervised domain adaptation
GAN
Contrastive loss
QA75 Electronic computers. Computer science
3rd-DAS
AC
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Human Activity Recognition (HAR) makes it possible to drive applications directly from embedded and wearable sensors. Machine learning, and especially deep learning, has made significant progress in learning sensor features from raw sensing signals with high recognition accuracy. However, most techniques need to be trained on a large labelled dataset, which is often difficult to acquire. In this paper, we present ContrasGAN, an unsupervised domain adaptation technique that addresses this labelling challenge by transferring an activity model from one labelled domain to other unlabelled domains. ContrasGAN uses bi-directional generative adversarial networks for heterogeneous feature transfer and contrastive learning to capture distinctive features between classes. We evaluate ContrasGAN on three commonly-used HAR datasets under conditions of cross-body, cross-user, and cross-sensor transfer learning. Experimental results show a superior performance of ContrasGAN on all these tasks over a number of state-of-the-art techniques, with relatively low computational cost.
Citation
Rosales Sanabria , A , Zambonelli , F , Dobson , S A & Ye , J 2021 , ' ContrasGAN : unsupervised domain adaptation in Human Activity Recognition via adversarial and contrastive learning ' , Pervasive and Mobile Computing , vol. In Press , 101477 , pp. 1-34 . https://doi.org/10.1016/j.pmcj.2021.101477
Publication
Pervasive and Mobile Computing
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.pmcj.2021.101477
ISSN
1574-1192
Type
Journal article
Rights
Copyright © 2021 Elsevier B.V. All rights reserved. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1016/j.pmcj.2021.101477.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/26305

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter