Show simple item record

Files in this item


Item metadata

dc.contributor.authorZeng, Xiangsunze
dc.contributor.authorKomanome, Yuko
dc.contributor.authorKawasaki, Tappei
dc.contributor.authorInada, Kengo
dc.contributor.authorJonaitis, Julius
dc.contributor.authorPulver, Stefan R.
dc.contributor.authorKazama, Hokto
dc.contributor.authorNose, Akinao
dc.identifier.citationZeng , X , Komanome , Y , Kawasaki , T , Inada , K , Jonaitis , J , Pulver , S R , Kazama , H & Nose , A 2021 , ' An electrically coupled pioneer circuit enables motor development via proprioceptive feedback in Drosophila embryos ' , Current Biology , vol. In press .
dc.identifier.otherRIS: urn:34C5ADF55F42DE49D0004CE235F0BC8F
dc.identifier.otherORCID: /0000-0001-5170-7522/work/101958937
dc.descriptionThis work was supported by KAKENHI Grant-in-Aid 19H04742, 18H05113, and 17H05554 to A.N.; 21H04789 and 18H02532 to H.K.; and 19J21596 (JSPS Fellows) to X.Z., and a grant from RIKEN to H.K.en
dc.description.abstractPrecocious movements are widely seen in embryos of various animal species. Whether such movements via proprioceptive feedback play instructive roles in motor development or are a mere reflection of activities in immature motor circuits is a long-standing question. Here we image the emerging motor activities in Drosophila embryos that lack proprioceptive feedback and show that proprioceptive experience is essential for the development of locomotor central pattern generators (CPGs). Downstream of proprioceptive inputs, we identify a pioneer premotor circuit composed of two pairs of segmental interneurons, whose gap-junctional transmission requires proprioceptive experience and plays a crucial role in CPG formation. The circuit autonomously generates rhythmic plateau potentials via IP3-mediated Ca2+ release from internal stores, which contribute to muscle contractions and hence produce proprioceptive feedback. Our findings demonstrate the importance of self-generated movements in instructing motor development and identify the cells, circuit, and physiology at the core of this proprioceptive feedback.
dc.relation.ispartofCurrent Biologyen
dc.subjectCentral pattern generatoren
dc.subjectMotor developmenten
dc.subjectProprioceptive feedbacken
dc.subjectGap junctionen
dc.subjectPacemaking activityen
dc.subjectQH301 Biologyen
dc.titleAn electrically coupled pioneer circuit enables motor development via proprioceptive feedback in Drosophila embryosen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Psychology and Neuroscienceen
dc.contributor.institutionUniversity of St Andrews. Centre for Biophotonicsen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record