St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

High performance non-doped green organic light emitting diode via delayed fluorescence

Thumbnail
View/Open
JMC_C_TTA_Manuscript.pdf (1.760Mb)
Date
14/10/2021
Author
Sk, Bahadur
Thangaraji, Vasudevan
Yadav, Nisha
Nanda, Gyana Prakash
Das, Sannibha
Gandeepan, Parthasarathy
Zysman-Colman, Eli
Rajamalli, Pachaiyappan
Funder
EPSRC
Grant ID
EP/P010482/1
Keywords
QD Chemistry
DAS
MCP
Metadata
Show full item record
Abstract
Non-doped, delayed fluorescence organic light-emitting diodes (OLEDs) provide a route to high performance devices and simplified device fabrication. Here, two ambipolar anthracene derivatives containing a hole-transporting di-p-tolylamine and a carbazole and an electron-transporting phosphine oxide moiety are rationally designed and synthesized. The thermal and optoelectronic properties were investigated and the neat films of these compounds show high photoluminescence quantum yields of 84–87%. Non-doped OLEDs with these luminogens exhibit green emission at ∼545 nm and an EQEmax of over 7.2% due to the delayed fluorescence resulting from triplet–triplet annihilation (TTA). The devices show a high luminance of over 104 400 cd m−2. Power efficiency and current efficiency maxima are up to 23.0 lm W−1 and 28.3 cd A−1, respectively. Moreover, the devices show very low efficiency roll-off and retain 90% of the maximum efficiency even at 20 000 cd m−2. When combined with a thermally activated delayed fluorescent (TADF) assistant dopant, the green-emitting OLEDs show a high EQEmax of 17.8%.
Citation
Sk , B , Thangaraji , V , Yadav , N , Nanda , G P , Das , S , Gandeepan , P , Zysman-Colman , E & Rajamalli , P 2021 , ' High performance non-doped green organic light emitting diode via delayed fluorescence ' , Journal of Materials Chemistry C , vol. Advance Article . https://doi.org/10.1039/D1TC03849D
Publication
Journal of Materials Chemistry C
Status
Peer reviewed
DOI
https://doi.org/10.1039/D1TC03849D
ISSN
2050-7526
Type
Journal article
Rights
Copyright © 2021 The Author(s). This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1039/D1TC03849D
Description
P. G. thanks the Science & Engineering Research Board (SERB), India, for the Start-up Research Grant (SRG) (Grant No: SRG/2020/000161). E.Z-C. thanks the Engineering and Physical Sciences Research Council (EPSRC) EP/P010482/1 for support. P. R. thanks the Indian Institute of Science (IISc) for generous financial support and the Science & Engineering Research Board (SERB), India, for the SERB-Power Grant (SPG) (Grant No: SPG/2020/000107). B.S. thank IISc for the C. V. Raman Fellowship under the Institute of Eminence (IoE).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/26192

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter