St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enantioselective homogeneous catalysts for the synthesis of fluorinated organic compounds

Thumbnail
View/Open
CharlotteJonesPhDThesis.pdf (7.516Mb)
Date
06/2011
Author
Jones, Charlotte E. S.
Supervisor
Clarke, Matt
Keywords
Asymmetric catalysis
Organocatalysis
Ene reaction
Fluorination
Hydrogenation
Thiourea
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
This thesis is divided into three main results chapters that reflect the path my research took. In the first results chapter, the first organocatalyst for the carbonyl-ene reaction was discovered and found to give high conversion using 1,3-bis(3,5-bis(trifluoromethyl)phenyl)thiourea. Various carbonyl and alkene precursors were examined in the ene reaction in both catalysed and uncatalysed reactions. It was found that ene reactions using fluoral and ethyl trifluoropyruvate give higher rates of reaction when compared to other carbonyl compounds. A novel enantiopure thiourea was synthesised and the ene reaction was catalysed enantioselectively to 33% e.e. In an attempt to catalyse the reaction to a further extent a new thiourea bonded to a P(=S)R2 group was developed. However, the intramolecular hydrogen bonding of this catalyst was thought to be so strong that this it did not catalyse the reaction. The synthesis of a chiral phosphoric acid was achieved but this was an unsuccessful catalyst in the ene reaction. Two component achiral thiourea and chiral acids were also examined in the ene and Mannich-type reaction. The new easily synthesised thiourea for this reaction has an interesting intermolecular hydrogen bonding coordination in the solid state. Asymmetric fluorination of ketoesters using palladium is a dynamic kinetic resolution. In the 2nd chapter cationic palladium complexes were synthesised and used to determine the optimum parameters for bidentate ligands in this reaction. Four carbon chain phosphines were found to give the highest conversion for this reaction among those ligands tested such as 1,4-bisdiphenylphosphinobutane (bite angle 99º). A new bis-phosphinous amide chiral ligand was developed with a bite angle of 96.7º. The dichloropalladium complex of this phosphine was isolated and structurally characterised. The use of the palladium complex in asymmetric fluorination was attempted however this was found to be unsuccessful. Mechanistic studies reveal that the formation of the desired cationic catalyst did not occur under conditions shown to work well for other palladium phosphine complexes. The ligand was investigated further in hydrogenation reactions. The phosphinous amide was protected as its borane and was used in the rhodium catalysed hydrogenation of alkenes to give high conversion and up to 93% e.e. The borane protected phosphinous amide was also found to catalyse the hydrogenation of acetophenone using copper complexes with up to 84% e.e for the hydrogenation of acetophenone, although conversion was quite low.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/2611

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter