Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.advisorvan Mourik, Tanja
dc.contributor.authorBryjko, Lilianna
dc.coverage.spatial162en_US
dc.date.accessioned2012-05-23T09:14:43Z
dc.date.available2012-05-23T09:14:43Z
dc.date.issued2011-06-22
dc.identifieruk.bl.ethos.552707
dc.identifier.urihttps://hdl.handle.net/10023/2608
dc.description.abstractThe research presented in this thesis was carried out as part of a collaboration between the groups of Dr Tanja van Mourik at the School of Chemistry, University of St Andrews and Professor Jonathan Tennyson at the Department of Physics and Astronomy at University College London. This thesis presents State-Averaged Complete Active Space Self Consistent Field (SA-CASSCF) calculations on nucleic acid bases, deoxyribose and phosphoric acid H₃PO₄). In the case of uracil, for comparison, Multireference Configuration Interaction calculations were also performed. The SA-CASSCF orbitals were subsequently used in R-matrix electron scattering calculations using the close-coupling model. Of major importance for obtaining accurate SA-CASSCF results is the choice of the active space and the number of calculated states. Properties such as the electronic energy, number of configurations, excitation energy and dipole moment were considered in the choice of active space. Electron-collision calculations were performed on two of the most stable isomers of phosphoric acid, a weakly dipolar form with all OH groups pointing up and a strongly dipolar form where one OH group points down. A broad shape resonance at about 7 eV was found for both isomers. Ten-state close-coupling calculations suggest the presence of narrow, Feshbach resonances in a similar energy region. Elastic and electronically inelastic cross sections were calculated for both isomers. The R-matrix calculations on uracil were done by the group from UCL. R-matrix calculations are currently being done on guanine. Scattering calculations on the other DNA bases will be performed in the near future.en_US
dc.language.isoenen_US
dc.publisherUniversity of St Andrews
dc.rightsCreative Commons Attribution 3.0 Unported
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/
dc.subjectR-matrixen_US
dc.subject.lccQC794.6C6B88
dc.subject.lcshElectron-molecule collisions--Mathematical modelsen_US
dc.subject.lcshNucleotidesen_US
dc.subject.lcshPhosphoric aciden_US
dc.subject.lcshSelf-consistent field theoryen_US
dc.subject.lcshR-matricesen_US
dc.titleSA-CASSCF and R-matrix calculations of low-energy electron collisions with DNA bases and phosphoric aciden_US
dc.typeThesisen_US
dc.contributor.sponsorEngineering and Physical Sciences Research Council (EPSRC)en_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US
dc.publisher.departmentUCLen_US


The following licence files are associated with this item:

  • Creative Commons

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 3.0 Unported
Except where otherwise noted within the work, this item's licence for re-use is described as Creative Commons Attribution 3.0 Unported