Show simple item record

Files in this item


Item metadata

dc.contributor.authorSandhu, J. K.
dc.contributor.authorRae, I. J.
dc.contributor.authorStaples, F. A.
dc.contributor.authorHartley, D. P.
dc.contributor.authorWalach, M.-T.
dc.contributor.authorElsden, Tom
dc.contributor.authorMurphy, K. R.
dc.identifier.citationSandhu , J K , Rae , I J , Staples , F A , Hartley , D P , Walach , M-T , Elsden , T & Murphy , K R 2021 , ' The roles of the magnetopause and plasmapause in storm-time ULF wave power enhancements ' , Journal of Geophysical Research: Space Physics , vol. 126 , no. 7 , e2021JA029337 .
dc.identifier.otherPURE: 281239141
dc.identifier.otherPURE UUID: e78bcfa5-62bc-459c-a101-a51798c5dc59
dc.identifier.otherScopus: 85111685199
dc.identifier.otherORCID: /0000-0002-1910-2010/work/118799810
dc.descriptionJ. K. Sandhu is supported by NERC grants NE/P017185/2 and NE/V002554/2. I. J. Rae is supported by NERC grants NE/P017185/2 and NE/V002554/2, and STFC Consolidate grant ST/V006320/1. F. A. Staples is supported by a Science and Technology Funding Council (STFC) studentship. D. P. Hartley is supported under JHU/APL contract 921647 under NASA Prime contract NAS5-01072. M.-T. Walach is supported by NERC grant NE/T000937/1. T. Elsden is supported by a Leverhulme Trust Early Career Fellowship (ECF-2019-155) and the University of Leicester. K. R. Murphy is partially funded by NASA ROSES Guest Investigator 18-HGIO18_2-0122 and Space Weather Operations to Research 18-HSWO2R18-0010. We thank the EMFISIS instrument team for data provision.en
dc.description.abstractUltra low frequency (ULF) waves play a crucial role in transporting and coupling energy within the magnetosphere. During geomagnetic storms, dayside magnetospheric ULF wave power is highly variable with strong enhancements that are dominated by elevated solar wind driving. However, the radial distribution of ULF wave power is complex - controlled interdependently by external solar wind driving and the internal magnetospheric structuring. We conducted a statistical analysis of observed storm-time ULF wave power from the Van Allen Probes spacecraft within 2012-2016. Focusing on the dayside (06 < magnetic local time ≤ 15), we observe large enhancements across 3 < L < 6 and a steep L dependence during the main phase. We consider how accounting for concurrent magnetopause and plasmapause locations may reduce statistical variability and improve parameterization of spatial trends over and above using the L value. Ordering storm time ULF wave power by L provides the weakest dependences from those considered, whereas ordering by distance from the magnetopause is more effective. We also explore dependences on local plasma density and find that spatially localized ULF wave power enhancements are confined within high density patches in the afternoon sector (likely plasmaspheric plumes). The results have critical implications for empirical models of ULF wave power and radial diffusion coefficients. We highlight the necessity of improved characterization of the highly distorted storm-time cold plasma density distribution, in order to more accurately predict ULF wave power.
dc.relation.ispartofJournal of Geophysical Research: Space Physicsen
dc.rightsCopyright © 2021. The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en
dc.subjectULF wavesen
dc.subjectGeomagnetic stormsen
dc.subjectVan Allen Probesen
dc.subjectInner magnetosphereen
dc.subjectQC Physicsen
dc.titleThe roles of the magnetopause and plasmapause in storm-time ULF wave power enhancementsen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. Applied Mathematicsen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record