St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Computer Science (School of)
  • Computer Science
  • Computer Science Theses
  • View Item
  •   St Andrews Research Repository
  • Computer Science (School of)
  • Computer Science
  • Computer Science Theses
  • View Item
  •   St Andrews Research Repository
  • Computer Science (School of)
  • Computer Science
  • Computer Science Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Homeostatic action selection for simultaneous multi-tasking

Thumbnail
View/Open
David-Symons-PhD-thesis.pdf (5.249Mb)
Date
29/07/2020
Author
Symons, David Andrew
Supervisor
Weir, Michael
Funder
Engineering and Physical Sciences Research Council (EPSRC)
Grant ID
EP/K503162/1
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Mobile robots are rapidly developing and gaining in competence, but the potential of available hardware still far outstrips our ability to harness. Domain-specific applications are most successful due to customised programming tailored to a narrow area of application. Resulting systems lack extensibility and autonomy, leading to increased cost of development. This thesis investigates the possibility of designing and implementing a general framework capable of simultaneously coordinating multiple tasks that can be added or removed in a plug and play manner. A homeostatic mechanism is proposed for resolving the contentions inevitably arising between tasks competing for the use of the same robot actuators. In order to evaluate the developed system, demonstrator tasks are constructed to reach a goal location, prevent collision, follow a contour around obstacles and balance a ball within a spherical bowl atop the robot. Experiments show preliminary success with the homeostatic coordination mechanism but a restriction to local search causes issues that preclude conclusive evaluation. Future work identifies avenues for further research and suggests switching to a planner with the sufficient foresight to continue evaluation.
DOI
https://doi.org/10.17630/sta/199
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Computer Science Theses
URI
http://hdl.handle.net/10023/26007

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter