Files in this item
Normalish amenable subgroups of the R. Thompson groups
Item metadata
dc.contributor.author | Bleak, Collin P. | |
dc.date.accessioned | 2022-09-08T23:45:19Z | |
dc.date.available | 2022-09-08T23:45:19Z | |
dc.date.issued | 2021-09-09 | |
dc.identifier.citation | Bleak , C P 2021 , ' Normalish amenable subgroups of the R. Thompson groups ' , International Journal of Foundations of Computer Science , vol. 32 , no. 06 , pp. 785-800 . https://doi.org/10.1142/s0129054121420089 | en |
dc.identifier.issn | 0129-0541 | |
dc.identifier.other | PURE: 274345252 | |
dc.identifier.other | PURE UUID: 844eae7d-20ab-4e53-9f47-1a24456617c9 | |
dc.identifier.other | ORCID: /0000-0001-5790-1940/work/100901235 | |
dc.identifier.other | Scopus: 85116583267 | |
dc.identifier.other | WOS: 000702147800009 | |
dc.identifier.uri | http://hdl.handle.net/10023/25979 | |
dc.description | Funding: UK Engineering and Physical Sciences Research Council (EPSRC) grant EP/R032866/1. | en |
dc.description.abstract | Results in C∗ algebras, of Matte Bon and Le Boudec, and of Haagerup and Olesen, apply to the R. Thompson groups F≤T≤V. These results together show that F is non-amenable if and only if T has a simple reduced C∗-algebra. In further investigations into the structure of C∗-algebras, Breuillard, Kalantar, Kennedy, and Ozawa introduce the notion of a normalish subgroup of a group G. They show that if a group G admits no non-trivial finite normal subgroups and no normalish amenable subgroups then it has a simple reduced C∗-algebra. Our chief result concerns the R. Thompson groups F<T<V; we show that there is an elementary amenable group E<F [where here, E≅…)≀Z)≀Z)≀Z] with E normalish in V. The proof given uses a natural partial action of the group V on a regular language determined by a synchronising automaton in order to verify a certain stability condition: once again highlighting the existence of interesting intersections of the theory of V with various forms of formal language theory. | |
dc.language.iso | eng | |
dc.relation.ispartof | International Journal of Foundations of Computer Science | en |
dc.rights | Copyright © 2021 World Scientific Publishing Co Pte Ltd. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1142/S0129054121420089. | en |
dc.subject | Thompson's groups | en |
dc.subject | Amenable | en |
dc.subject | C*-simplicity | en |
dc.subject | Regular language | en |
dc.subject | Normalish | en |
dc.subject | QA Mathematics | en |
dc.subject | T-NDAS | en |
dc.subject.lcc | QA | en |
dc.title | Normalish amenable subgroups of the R. Thompson groups | en |
dc.type | Journal article | en |
dc.contributor.sponsor | EPSRC | en |
dc.description.version | Postprint | en |
dc.contributor.institution | University of St Andrews. School of Mathematics and Statistics | en |
dc.contributor.institution | University of St Andrews. Centre for Interdisciplinary Research in Computational Algebra | en |
dc.contributor.institution | University of St Andrews. Pure Mathematics | en |
dc.identifier.doi | https://doi.org/10.1142/s0129054121420089 | |
dc.description.status | Peer reviewed | en |
dc.date.embargoedUntil | 2022-09-09 | |
dc.identifier.grantnumber | EP/R032866/1 | en |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.