St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unsigned magnetic flux as a proxy for radial-velocity variations in sun-like stars

Thumbnail
View/Open
Haywood_2022_ApJ_935_6.pdf (39.38Mb)
Date
10/08/2022
Author
Haywood, R. D.
Milbourne, T. W.
Saar, S. H.
Mortier, A.
Phillips, D.
Charbonneau, D.
Cameron, A. Collier
Cegla, H. M.
Meunier, N.
III, M. L. Palumbo
Funder
Science & Technology Facilities Council
Grant ID
ST/R00824/1
Keywords
Solar cycle
Active sun
Quiet sun
Sunspots
Solar faculae
Exoplanet detection methods
Radial velocity
Astronomy data analysis
QB Astronomy
QC Physics
3rd-DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
A major obstacle to detecting and characterizing long-period, low-mass exoplanets is the intrinsic radial-velocity (RV) variability of host stars. To better understand RV variability, we estimate disk-averaged RV variations of the Sun over its magnetic cycle, from the Fe i line observed by SDO/HMI, using a physical model for rotationally modulated magnetic activity that was previously validated against HARPS-N solar observations. We estimate the unsigned magnetic flux and show that a linear fit to it reduces the rms of RV variations by 62%, i.e., a factor of 2.6. We additionally apply the FF′ method, which predicts RV variations based on a star’s photometric variations. At cycle maximum, we find that additional processes must be at play beyond suppression of convective blueshift and velocity imbalances resulting from brightness inhomogeneities, in agreement with recent studies of RV variations. By modeling RV variations over the magnetic cycle using a linear fit to the unsigned magnetic flux, we recover injected planets at a period of ≈300 days with RV semi-amplitudes down to 0.3 m s−1. To reach 0.1 m s−1, we will need to identify and model additional phenomena that are not well traced by ∣Bˆobs∣ or FF′. This study motivates ongoing and future efforts to develop observation and analysis techniques to measure the unsigned magnetic flux at high precision in slowly rotating, relatively inactive stars like the Sun. We conclude that the unsigned magnetic flux is an excellent proxy for rotationally modulated, activity-induced RV variations, and could become key to confirming and characterizing Earth analogs.
Citation
Haywood , R D , Milbourne , T W , Saar , S H , Mortier , A , Phillips , D , Charbonneau , D , Cameron , A C , Cegla , H M , Meunier , N & III , M L P 2022 , ' Unsigned magnetic flux as a proxy for radial-velocity variations in sun-like stars ' , Astrophysical Journal , vol. 935 , no. 1 , 6 . https://doi.org/10.3847/1538-4357/ac7c12
Publication
Astrophysical Journal
Status
Peer reviewed
DOI
https://doi.org/10.3847/1538-4357/ac7c12
ISSN
0004-637X
Type
Journal article
Rights
Copyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Description
Funding: A.C.C. acknowledges support from the Science and Technology Facilities Council (STFC) consolidated grant number ST/R000824/1.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/25889

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter