Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorde Beurs, Zoe. L.
dc.contributor.authorVanderburg, Andrew
dc.contributor.authorShallue, Christopher J.
dc.contributor.authorDumusque, Xavier
dc.contributor.authorCameron, Andrew Collier
dc.contributor.authorLeet, Christopher
dc.contributor.authorBuchhave, Lars A.
dc.contributor.authorCosentino, Rosario
dc.contributor.authorGhedina, Adriano
dc.contributor.authorHaywood, Raphaëlle D.
dc.contributor.authorLangellier, Nicholas
dc.contributor.authorLatham, David W.
dc.contributor.authorLópez-Morales, Mercedes
dc.contributor.authorMayor, Michel
dc.contributor.authorMicela, Giusi
dc.contributor.authorMilbourne, Timothy W.
dc.contributor.authorMortier, Annelies
dc.contributor.authorMolinari, Emilio
dc.contributor.authorPepe, Francesco
dc.contributor.authorPhillips, David F.
dc.contributor.authorPinamonti, Matteo
dc.contributor.authorPiotto, Giampaolo
dc.contributor.authorRice, Ken
dc.contributor.authorSasselov, Dimitar
dc.contributor.authorSozzetti, Alessandro
dc.contributor.authorUdry, Stéphane
dc.contributor.authorWatson, Christopher A.
dc.date.accessioned2022-08-22T16:30:09Z
dc.date.available2022-08-22T16:30:09Z
dc.date.issued2022-08-01
dc.identifier280831192
dc.identifiera2b5b1c7-a27c-48be-83db-074152f27b04
dc.identifier85134854128
dc.identifier000824065700001
dc.identifier.citationde Beurs , Z L , Vanderburg , A , Shallue , C J , Dumusque , X , Cameron , A C , Leet , C , Buchhave , L A , Cosentino , R , Ghedina , A , Haywood , R D , Langellier , N , Latham , D W , López-Morales , M , Mayor , M , Micela , G , Milbourne , T W , Mortier , A , Molinari , E , Pepe , F , Phillips , D F , Pinamonti , M , Piotto , G , Rice , K , Sasselov , D , Sozzetti , A , Udry , S & Watson , C A 2022 , ' Identifying exoplanets with deep learning. IV. Removing stellar activity signals from radial velocity measurements using neural networks ' , Astronomical Journal , vol. 164 , no. 2 , 49 . https://doi.org/10.3847/1538-3881/ac738een
dc.identifier.issn0004-6256
dc.identifier.otherJisc: 444027
dc.identifier.otherpublisher-id: ajac738e
dc.identifier.othermanuscript: ac738e
dc.identifier.otherother: aas27921
dc.identifier.otherORCID: /0000-0002-8863-7828/work/117211242
dc.identifier.urihttps://hdl.handle.net/10023/25874
dc.descriptionFunding: This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation program (SCORE grant agreement No. 851555). A.C.C. acknowledges support from the Science and Technology Facilities Council (STFC) consolidated grant No. ST/R000824/1 and UKSA grant ST/R003203/1. R.D.H. is funded by the UK Science and Technology Facilities Council (STFC)’s Ernest Rutherford Fellowship (grant number ST/V004735/1). M.P. acknowledges financial support from the ASI-INAF agreement No. 2018-16-HH.0. A.M. acknowledges support from the senior Kavli Institute Fellowships.en
dc.description.abstractExoplanet detection with precise radial velocity (RV) observations is currently limited by spurious RV signals introduced by stellar activity. We show that machine-learning techniques such as linear regression and neural networks can effectively remove the activity signals (due to starspots/faculae) from RV observations. Previous efforts focused on carefully filtering out activity signals in time using modeling techniques like Gaussian process regression. Instead, we systematically remove activity signals using only changes to the average shape of spectral lines, and use no timing information. We trained our machine-learning models on both simulated data (generated with the SOAP 2.0 software) and observations of the Sun from the HARPS-N Solar Telescope. We find that these techniques can predict and remove stellar activity both from simulated data (improving RV scatter from 82 to 3 cm s−1) and from more than 600 real observations taken nearly daily over 3 yr with the HARPS-N Solar Telescope (improving the RV scatter from 1.753 to 1.039 m s−1, a factor of ∼1.7 improvement). In the future, these or similar techniques could remove activity signals from observations of stars outside our solar system and eventually help detect habitable-zone Earth-mass exoplanets around Sun-like stars.
dc.format.extent21
dc.format.extent4664953
dc.language.isoeng
dc.relation.ispartofAstronomical Journalen
dc.subjectExoplanet astronomyen
dc.subjectRadial velocityen
dc.subjectConvolutional neural networksen
dc.subjectQA75 Electronic computers. Computer scienceen
dc.subjectQB Astronomyen
dc.subjectQC Physicsen
dc.subjectDASen
dc.subject.lccQA75en
dc.subject.lccQBen
dc.subject.lccQCen
dc.titleIdentifying exoplanets with deep learning. IV. Removing stellar activity signals from radial velocity measurements using neural networksen
dc.typeJournal articleen
dc.contributor.sponsorScience & Technology Facilities Councilen
dc.contributor.sponsorScience & Technology Facilities Councilen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. St Andrews Centre for Exoplanet Scienceen
dc.identifier.doi10.3847/1538-3881/ac738e
dc.description.statusPeer revieweden
dc.identifier.grantnumberST/R003203/1en
dc.identifier.grantnumberST/R00824/1en


This item appears in the following Collection(s)

Show simple item record