Base size and generating graphs of primitive permutation groups
View/Open
Date
14/06/2022Author
Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
In this thesis we consider base size and properties of the generating graph for finite groups.
Let Ω = {1,...,n}, let Sₙ = Sym({1,...,n}) and let G ≤ Sₙ. A base for G is a sequence Λ = (ω₁, . . . , ωₖ) of points in Ω such that the pointwise stabilizer, G_{ω₁,...,ωₖ} , is the identity. The base size of G, denoted by b(G, Ω) or b(G), is the length of the shortest base. We say that Λ is an irredundant base if
G > G_{ω₁} > G_{ω₁,ω₂} > ··· > G_{ω₁,ω₂,...,ωₖ} = 1.
If no irredundant base is longer than Λ, then we say that Λ is a maximal irredundant base for G and denote its length by I(G). A group is called large base if it is either a product action or almost simple group, and its socle is one or more copies of the alternating group Aᵣ acting on ksets.
Let G be a primitive subgroup of Sₙ that is not large base. We prove that any irredundant base for G has size at most 5log₂n. This bound is best possible up to a small multiplicative constant and is the first logarithmic bound on the size of an irredundant base for such groups. We show that for any constant c, there are infinitely many primitive groups with maximal irredundant base size at least c times the minimal base size. As a corollary of the first result, the relational complexity of G, denoted RC(G) (see Definition 2.2.10), is at most 5log₂n + 1. In addition the maximal size of a minimal base and the height, denoted B(G) and H(G) (see Definitions 2.2.1 and 2.2.5), are both at most 5log₂n. Furthermore, we deduce that a base for G of size at most 5log₂n can be computed in polynomial time.
The generating graph Γ(G) of a finite group G has vertex set the nonidentity elements of G, with two elements connected exactly when they generate G. A coclique in a graph is an empty induced subgraph, so a coclique in Γ(G) is a subset of G such that no pair of elements generate G. A coclique is maximal if it is contained in no larger coclique. It is easy to see that the nonidentity elements of a maximal subgroup of G form a coclique in Γ(G), but this coclique need not be maximal.
Let G = Sₙ or Aₙ. We first determine when the intransitive maximal subgroups of G are maximal cocliques in Γ(G), and when they are not we find the unique maximal coclique in which they are contained. We then show that for sufficiently large n, the imprimitive maximal subgroups of G are all maximal cocliques in Γ(G).
In addition, using the result on intransitive maximal subgroups we prove that a conjecture of Cameron, Lucchini, and RoneyDougal holds for G under certain restrictions on n. Namely we prove that two elements of G have identical sets of neighbours in Γ(G) if and only if they belong to exactly the same maximal subgroups. Finally under another set of restrictions on n we then determine precisely which maximal subgroups are maximal cocliques in Γ(G).
Type
Thesis, PhD Doctor of Philosophy
Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Related items
Showing items related by title, author, creator and subject.

Topics in computational group theory : primitive permutation groups and matrix group normalisers
Coutts, Hannah Jane (University of St Andrews, 201111)  ThesisPart I of this thesis presents methods for finding the primitive permutation groups of degree d, where 2500 ≤ d < 4096, using the O'NanScott Theorem and Aschbacher's theorem. Tables of the groups G are given for each ... 
What is a group? Young children's perceptions of different types of groups and group entitativity
Plötner, Maria; Over, Harriet; Carpenter, Malinda; Tomasello, Michael (20160324)  Journal articleTo date, developmental research on groups has focused mainly on ingroup biases and intergroup relations. However, little is known about children’s general understanding of social groups and their perceptions of different ... 
The construction of finite soluble factor groups of finitely presented groups and its application
Wegner, Alexander (University of St Andrews, 1992)  ThesisComputational group theory deals with the design, analysis and computer implementation of algorithms for solving computational problems involving groups, and with the applications of the programs produced to interesting ...