St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Pure Mathematics
  • Pure Mathematics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Pure Mathematics
  • Pure Mathematics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Pure Mathematics
  • Pure Mathematics Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The construction of finite soluble factor groups of finitely presented groups and its application

Thumbnail
View/Open
AlexanderWegnerPhDThesis.pdf (5.763Mb)
Date
1992
Author
Wegner, Alexander
Supervisor
Robertson, E. F.
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Computational group theory deals with the design, analysis and computer implementation of algorithms for solving computational problems involving groups, and with the applications of the programs produced to interesting questions in group theory, in other branches of mathematics, and in other areas of science. This thesis describes an implementation of a proposal for a Soluble Quotient Algorithm, i.e. a description of the algorithms used and a report on the findings of an empirical study of the behaviour of the programs, and gives an account of an application of the programs. The programs were used for the construction of soluble groups with interesting properties, e.g. for the construction of soluble groups of large derived length which seem to be candidates for groups having efficient presentations. New finite soluble groups of derived length six with trivial Schur multiplier and efficient presentations are described. The methods for finding efficient presentations proved to be only practicable for groups of moderate order. Therefore, for a given derived length soluble groups of small order are of interest. The minimal soluble groups of derived length less than or equal to six are classified.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Pure Mathematics Theses
URI
http://hdl.handle.net/10023/12600

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter