St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Alkaline-silicate REE-HFSE systems

Thumbnail
View/Open
Beard_2022_EG_Alklaline_silicate_CC.pdf (4.023Mb)
Date
01/02/2023
Author
Beard, Charles D.
Goodenough, Kathryn M.
Borst, Anouk M.
Wall, Frances
Siegfried, Pete R.
Deady, Eimear A.
Pohl, Claudia
Hutchison, William
Finch, Adrian A.
Walter, Benjamin F.
Elliott, Holly A.L.
Brauch, Klaus
Funder
European Commission
Grant ID
689909
Keywords
QE Geology
NDAS
MCP
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Abstract Development of renewable energy infrastructure requires critical raw materials, such as the rare earth elements (REEs, including scandium) and niobium, and is driving expansion and diversification in their supply chains. Although alternative sources are being explored, the majority of the world’s resources of these elements are found in alkaline-silicate rocks and carbonatites. These magmatic systems also represent major sources of fluorine and phosphorus. Exploration models for critical raw materials are comparatively less well developed than those for major and precious metals, such as iron, copper, and gold, where most of the mineral exploration industry continues to focus. The diversity of lithologic relationships and a complex nomenclature for many alkaline rock types represent further barriers to the exploration and exploitation of REE-high field strength element (HFSE) resources that will facilitate the green revolution. We used a global review of maps, cross sections, and geophysical, geochemical, and petrological observations from alkaline systems to inform our description of the alkaline-silicate REE + HFSE mineral system from continental scale (1,000s km) down to deposit scale (~1 km lateral). Continental-scale targeting criteria include a geodynamic trigger for low-degree mantle melting at high pressure and a mantle source enriched in REEs, volatile elements, and alkalies. At the province and district scales, targeting criteria relate to magmatic-system longevity and the conditions required for extensive fractional crystallization and the residual enrichment of the REEs and HFSEs. A compilation of maps and geophysical data were used to construct an interactive 3-D geologic model (25-km cube) that places mineralization within a depth and horizontal reference frame. It shows typical lithologic relationships surrounding orthomagmatic REE-Nb-Ta-Zr-Hf mineralization in layered agpaitic syenites, roof zone REE-Nb-Ta mineralization, and mineralization of REE-Nb-Zr associated with peralkaline granites and pegmatites. The resulting geologic model is presented together with recommended geophysical and geochemical approaches for exploration targeting, as well as mineral processing and environmental factors pertinent for the development of mineral resources hosted by alkaline-silicate magmatic systems.
Citation
Beard , C D , Goodenough , K M , Borst , A M , Wall , F , Siegfried , P R , Deady , E A , Pohl , C , Hutchison , W , Finch , A A , Walter , B F , Elliott , H A L & Brauch , K 2023 , ' Alkaline-silicate REE-HFSE systems ' , Economic Geology , vol. 118 , no. 1 , pp. 177-208 . https://doi.org/10.5382/econgeo.4956
Publication
Economic Geology
Status
Peer reviewed
DOI
https://doi.org/10.5382/econgeo.4956
ISSN
0361-0128
Type
Journal article
Rights
Copyright © 2022 The authors and parties of the HiTech AlkCarb project. Open Access. This article is published under the terms of the CC-BY 3.0 license.
Description
This research was supported by the HiTech AlkCarb project, funded through the European Union Horizon 2020 research and innovation program (689909).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/25801

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter